A Short Introduction to the Telescope and Chromatic Splitting Conjectures

  • Tobias BarthelEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 309)


In this note, we give a brief overview of the telescope conjecture and the chromatic splitting conjecture in stable homotopy theory. In particular, we provide a proof of the folklore result that Ravenel’s telescope conjecture for all heights combined is equivalent to the generalized telescope conjecture for the stable homotopy category, and explain some similarities with modular representation theory.


Bousfield localization Telescope conjecture Chromatic splitting conjecture 



I would like to thank Mike Hopkins and the participants of Talbot 2013 for several useful discussions on this topic as well as Agnès Beaudry, Malte Leip, Doug Ravenel, Gabriel Valenzuela, and the referee for comments on an earlier draft of this document. Furthermore, I am grateful to Haynes Miller and Norihiko Minami for encouraging me to revise my original talk notes.


  1. 1.
    Adams, J.F.: Operations of the \(n\)th Kind in \(K\)-Theory, and What We Don’t Know About \(RP^{\infty }\). London Mathematical Society Lecture Note Series, vol. 11, pp. 1–9 (1974)Google Scholar
  2. 2.
    Balmer, P.: Tensor triangular geometry. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 85–112. Hindustan Book Agency, New Delhi (2010)Google Scholar
  3. 3.
    Barthel, T.: Chromatic completion. Proc. Am. Math. Soc. 144(5), 2263–2274 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barthel, T.: Auslander-Reiten sequences, Brown-Comenetz duality, and the \(K(n)\)-local generating hypothesis. Algebr. Represent. Theory 20(3), 569–581 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barthel, T., Beaudry, A.: Chromatic structures in stable homotopy theory (2019). arXiv e-prints arXiv:1901.09004
  6. 6.
    Barthel, T., Beaudry, A., Peterson, E.: The homology of inverse limits and the chromatic splitting conjecture. ForthcomingGoogle Scholar
  7. 7.
    Barthel, T., Heard, D., Valenzuela, G.: The algebraic chromatic splitting conjecture for Noetherian ring spectra. Math. Z. 290(3–4), 1359–1375 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barthel, T., Schlank, T., Stapleton, N.: Chromatic homotopy theory is asymptotically algebraic. arXiv e-prints (2017). arXiv:1711.00844
  9. 9.
    Beaudry, A., Goerss, P.G., Henn, H.W.: Chromatic splitting for the \(K(2)\)-local sphere at \(p=2\). arXiv e-prints (2017). arXiv:1712.08182
  10. 10.
    Benson, D.J., Carlson, J.F., Rickard, J.: Thick subcategories of the stable module category. Fund. Math. 153(1), 59–80 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Benson, D.J., Chebolu, S.K., Christensen, J.D., Mináč, J.: The generating hypothesis for the stable module category of a \(p\)-group. J. Algebra 310(1), 428–433 (2007)Google Scholar
  12. 12.
    Benson, D.J., Iyengar, S.B., Krause, H.: Stratifying modular representations of finite groups. Ann. Math. (2) 174(3), 1643–1684 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Benson, D.J., Krause, H.: Complexes of injective \(kG\)-modules. Algebra Number Theory 2(1), 1–30 (2008)Google Scholar
  14. 14.
    Bousfield, A.K.: The localization of spectra with respect to homology. Topology 18(4), 257–281 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bousfield, A.K.: On \(K(n)\)-equivalences of spaces. In: Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998). Contemporary Mathematics, vol. 239, pp. 85–89. American Mathematical Society Providence, RI (1999)Google Scholar
  16. 16.
    Carlson, J.F., Chebolu, S.K., Mináč, J.: Freyd’s generating hypothesis with almost split sequences. Proc. Am. Math. Soc. 137(8), 2575–2580 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Devinatz, E.S.: \(K\)-theory and the generating hypothesis. Am. J. Math. 112(5), 787–804 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Devinatz, E.S.: A counterexample to a BP-analogue of the chromatic splitting conjecture. Proc. Am. Math. Soc. 126(3), 907–911 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Devinatz, E.S.: The generating hypothesis revisited. In: Stable and Unstable Homotopy (Toronto, ON, 1996). Fields Institute Communications, vol. 19, pp. 73–92. American Mathematical Society, Providence, RI (1998)Google Scholar
  20. 20.
    Devinatz, E.S.: Towards the finiteness of \(\pi _\ast L_{K(n)}S^0\). Adv. Math. 219(5), 1656–1688 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Devinatz, E.S., Hopkins, M.J., Smith, J.H.: Nilpotence and stable homotopy theory. I. Ann. Math. (2) 128(2), 207–241 (1988)Google Scholar
  22. 22.
    Freyd, P.: Stable homotopy. In: Proceedings of the Conference Categorical Algebra (La Jolla, Calif., 1965), pp. 121–172. Springer, New York (1966)CrossRefGoogle Scholar
  23. 23.
    Goerss, P., Henn, H.-W., Mahowald, M., Rezk, C.: A resolution of the \(K(2)\)-local sphere at the prime 3. Ann. Math. (2) 162(2), 777–822 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Goerss, P.G., Henn, H.-W., Mahowald, M.: The rational homotopy of the \(K(2)\)-local sphere and the chromatic splitting conjecture for the prime 3 and level 2. Doc. Math. 19, 1271–1290 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hopkins, M.J., Gross, B.H.: The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory. Bull. Am. Math. Soc. (N.S.) 30(1), 76–86 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hopkins, M.J., Mahowald, M., Sadofsky, H.: Constructions of elements in Picard groups. In: Topology and representation theory (Evanston, IL, 1992). Contemporary Mathematics, vol. 158, pp. 89–126. American Mathematical Society, Providence, RI (1994)Google Scholar
  27. 27.
    Hopkins, M.J., Smith, J.H.: Nilpotence and stable homotopy theory. II. Ann. Math. (2) 148(1), 1–49 (1998)Google Scholar
  28. 28.
    Hovey, M.: Bousfield localization functors and Hopkins’ omatic splitting conjecture. In: The Čech centennial (Boston, MA, 1993). Contemporary Mathematics, vol. 181, pp. 225–250. American Mathematical Society, Providence, RI (1995)Google Scholar
  29. 29.
    Hovey, M.: On Freyd’s generating hypothesis. Q. J. Math. 58(1), 31–45 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hovey, M., Palmieri, J.H.: The structure of the Bousfield lattice. In: Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998). Contemporary Mathematics, vol. 239, pp. 175–196. American. Mathematical Society, Providence, RI (1999)Google Scholar
  31. 31.
    Hovey, M.A., Strickland, N.P.: Morava \({K}\)-theories and localisation. Mem. Am. Math. Soc. 139(666), viii+100–100 (1999)Google Scholar
  32. 32.
    Keller, B.: A remark on the generalized smashing conjecture. Manuscripta Math. 84(2), 193–198 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Krause, H.: Smashing subcategories and the telescope conjecture–an algebraic approach. Invent. Math. 139(1), 99–133 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mahowald, M.: \(b{\rm o}\)-resolutions. Pacific J. Math. 92(2), 365–383 (1981)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mahowald, M., Ravenel, D., Shick, P.: The triple loop space approach to the telescope conjecture. In: Homotopy Methods in Algebraic Topology (Boulder, CO, 1999). Contemporary Mathematics, vol. 271, pp. 217–284. American Mathematical Society, Providence, RI (2001)Google Scholar
  36. 36.
    Mahowald, M., Sadofsky, H.: \(v_n\) telescopes and the Adams spectral sequence. Duke Math. J. 78(1), 101–129 (1995)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Miller, H.: Finite localizations. Bol. Soc. Mat. Mexicana (2) 37(1-2), 383–389 (1992). Papers in honor of José Adem (Spanish)Google Scholar
  38. 38.
    Miller, H.R.: On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space. J. Pure Appl. Algebra 20(3), 287–312 (1981)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Minami, N.: On the chromatic tower. Am. J. Math. 125(3), 449–473 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Morava, J.: A remark on Hopkins’ chromatic splitting conjecture (2014). arXiv e-prints arXiv:1406.3286
  41. 41.
    Ohkawa, T.: The injective hull of homotopy types with respect to generalized homology functors. Hiroshima Math. J. 19(3), 631–639 (1989)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Pstra̧gowski, P.: Chromatic homotopy is algebraic when \(p > n^{2}+n+1 \) (2018). arXiv e-prints arXiv:1810.12250
  43. 43.
    Ravenel, D.C.: Localization with respect to certain periodic homology theories. Am. J. Math. 106(2), 351–414 (1984)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ravenel, D.C.: Nilpotence and Periodicity in Stable Homotopy Theory. Annals of Mathematics Studies, vol. 128. Princeton University Press, Princeton, NJ (1992). Appendix C by Jeff SmithGoogle Scholar
  45. 45.
    Ravenel, D.C.: Progress report on the telescope conjecture. In: Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990). London Mathematical Society Lecture Note Series, vol. 176, pp. 1–21. Cambridge University Press, Cambridge (1992)Google Scholar
  46. 46.
    Ravenel, D.C.: Life after the telescope conjecture. In: Algebraic \(K\)-theory and algebraic topology (Lake Louise, AB, 1991). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 407, pp. 205–222. Kluwer Academic. Publications, Dordrecht (1993)CrossRefGoogle Scholar
  47. 47.
    Shimomura, K., Yabe, A.: The homotopy groups \(\pi _*(L_2S^0)\). Topology 34(2), 261–289 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Max Planck Institute for MathematicsBonnGermany

Personalised recommendations