Some Technical Aspects of Factorization Algebras on Manifolds

  • Takuo MatsuokaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 309)


We describe the basic ideas of factorization algebras on manifolds and topological chiral homology, with emphasis on their gluing properties.


Factorization algebra Topological chiral homology \(E_n\)-algebra Homotopical algebra 



The author is grateful to the anonymous referee for the fair criticism and helpful suggestions.


  1. 1.
    Anderson, D.W.: Chain functors and homology theories. In: Symposium Algebraic Topology. Lecture Notes in Mathematics, vol. 249, pp. 1–12 (1971)Google Scholar
  2. 2.
    Ayala, D., Francis, J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beilinson, A., Drinfeld, V.: Chiral Algebras. American Mathematical Society Colloquium Publications. vol. 51, vi\(+\)375 pp. American Mathematical Society, Providence, RI (2004). ISBN: 0-8218-3528-9Google Scholar
  4. 4.
    Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347. Springer, Berlin-New York (1973)CrossRefGoogle Scholar
  5. 5.
    Calaque, D.: Around Hochschild (co)homology. Habilitation thesis, Université Claude Bernard Lyon 1 (2013)Google Scholar
  6. 6.
    Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory. Draft available at
  7. 7.
    Dunn, G.: Tensor product of operads and iterated loop spaces. J. Pure Appl. Algebra 50(3), 237–258 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ginot, G.: Notes on factorization algebras, factorization homology and applications. Calaque, D. et al. (ed.) Mathematical aspects of quantum field theories. Springer. Mathematical Physics Studies, pp. 429–552 (2015)Google Scholar
  9. 9.
    Ginot, G., Tradler, T., Zeinalian, M.: Higher Hochschild homology, topological chiral homology and factorization algebras. Commun. Math. Phys. 326(3), 635–686 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kontsevich, M.: Operads and motives in deformation quantization. Mosh Flato (1937–1998). Lett. Math. Phys. 48(1), 35–72 (1999)Google Scholar
  11. 11.
    Lurie, J.: Higher Algebra (2017).
  12. 12.
    Matsuoka, T.: Descent properties of the topological chiral homology. Münster J. Math. 10, 83–118 (2017). Mathematical Reviews MR3624103. Available via
  13. 13.
    Pirashvili, T.: Hodge decomposition for higher order Hochschild homology. Ann. Sci. Éc. Norm. Supér. (4) 33(2), 151–179 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Intage Technosphere Inc.Chiyoda-Ku, TokyoJapan

Personalised recommendations