Skip to main content

Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetics for Biomedical Application

  • Chapter
  • First Online:
Nanozymology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Iron oxide nanoparticles have been widely used in many important fields due to excellent nanoscale physical properties such as magnetism/superparamagnetism, and they are usually assumed biological inert. However, in the last few years, iron oxide nanoparticles were surprisingly found with intrinsic enzyme-like activities and are now widely regarded as novel enzyme mimetics. A specified term, “Nanozyme”, has been coined to define the new property for intrinsic enzymatic activities of nanomaterials. Since then, iron oxide nanoparticles have been used as nanozyme to facilitate their biomedical applications . In this review, we will systematically introduce the enzymatic features of iron oxide nanozyme (IONzyme) and summarize the extended novel applications based on the intrinsic enzyme-like activities .

The content in this chapter has been published on Theranostics and reformatted in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

DAB:

3, 3′-Diaminobenzidine

DMSA:

Dimercaptosuccinic acid

DNA:

Deoxyribonucleic acid

ELISA:

Enzyme-linked immunosorbent assay

ESR:

Electron spin resonance

GO:

Graphene oxide

GOx:

Glucose oxidase

HRP:

Horseradish peroxidase

ION:

Zyme iron oxide nanozyme

MRI:

Magnetic resonance imaging

MNPs:

Magnetic nanoparticles

OPD:

o-phenylenediamine

ROS:

Reactive oxygen species

SPIO:

Superparamagnetic iron oxide

TA:

Terephthalic acid

TMB:

3, 3′, 5, 5′-Tetramethylbenzidine

References

  1. Unsoy G, Gunduz U, Oprea O et al (2015) Magnetite: from synthesis to applications. Curr Top Med Chem 15(16):1622–1640

    CAS  Google Scholar 

  2. Xie J, Huang J, Li X et al (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294

    CAS  Google Scholar 

  3. Pan Y, Du XW, Zhao F et al (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942

    CAS  Google Scholar 

  4. Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomed UK 5(9):1401–1414

    CAS  Google Scholar 

  5. Colombo M, Carregal-Romero S, Casula MF et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    CAS  Google Scholar 

  6. Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44(10):875–882

    CAS  Google Scholar 

  7. Lacroix LM, Ho D, Sun SH (2010) Magnetic nanoparticles as both imaging probes and therapeutic agents. Curr Top Med Chem 10(12):1184–1197

    CAS  Google Scholar 

  8. Zhu L, Zhou Z, Mao H et al (2017) Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 12(1):73–87

    CAS  Google Scholar 

  9. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17(5):1041–1054

    CAS  Google Scholar 

  10. Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    CAS  Google Scholar 

  11. Song Y, Qu K, Zhao C et al (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    CAS  Google Scholar 

  12. Ragg R, Tahir MN, Tremel W (2016) Solids go bio: Inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 13–14:1906–1915

    Google Scholar 

  13. Tao Y, Ju EG, Ren JS et al (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27(6):1097–1104

    CAS  Google Scholar 

  14. Cheng HJ, Lin SC, Muhammad F et al (2016) Rationally modulate the oxidase-like activity of nanoceria for self regulated bioassays. Acs Sensors 1(11):1336–1343

    CAS  Google Scholar 

  15. Wang S, Cazelles R, Liao WC et al (2017) Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanoparticles. Nano Lett 17(3):2043–2048

    CAS  Google Scholar 

  16. Singh S (2016) Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases 11(4)

    Google Scholar 

  17. Vázquez-González M, Liao W-C, Cazelles R et al (2017) Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 11(3):3247–3253

    Google Scholar 

  18. Dong ZY, Luo Q, Liu JQ (2012) Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 41(23):7890–7908

    CAS  Google Scholar 

  19. He WW, Wamer W, Xia QS et al (2014) Enzyme-like activity of nanomaterials. J Environ Sci Heal C 32(2):186–211

    CAS  Google Scholar 

  20. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    CAS  Google Scholar 

  21. Chen ZW, Ji HW, Liu CQ et al (2016) A multinuclear metal complex based DNase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew Chem Int Edit 55(36):10732–10736

    CAS  Google Scholar 

  22. Cheng HJ, Zhang L, He J et al (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88(10):5489–5497

    CAS  Google Scholar 

  23. Korschelt K, Ragg R, Metzger CS et al (2017) Glycine-functionalized copper(II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale 9(11):3952–3960

    CAS  Google Scholar 

  24. Gao N, Dong K, Zhao AD et al (2016) Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res 9(4):1079–1090

    CAS  Google Scholar 

  25. Sun A, Mu L, Hu X (2017) Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl Mater Interfaces 9(14):12241–12252

    CAS  Google Scholar 

  26. Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Science China, Life sciences

    Google Scholar 

  27. Gao LZ, Yan XY (2013) Discovery and current application of nanozyme. Prog Biochem Biophys 40(10):892–902

    CAS  Google Scholar 

  28. Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater

    Google Scholar 

  29. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    CAS  Google Scholar 

  30. Wang XY, Hu YH, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3(1):41–60

    CAS  Google Scholar 

  31. Wang X, Guo W, Hu Y et al (2016) Nanozymes: next wave of artificial enzymes. Springer, Berlin, Heidelberg

    Google Scholar 

  32. Shen Z, Wu A, Chen X (2016) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm

    Google Scholar 

  33. Lee N, Yoo D, Ling D et al (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689

    CAS  Google Scholar 

  34. Liu G, Gao J, Ai H et al (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9–10):1533–1545

    CAS  Google Scholar 

  35. Chen ZW, Yin JJ, Zhou YT et al (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012

    CAS  Google Scholar 

  36. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    CAS  Google Scholar 

  37. Liu BW, Han X, Liu JW (2016) Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 8(28):13620–13626

    CAS  Google Scholar 

  38. Zhang RZ, He SJ, Zhang CM et al (2015) Three-dimensional Fe- and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose. J Mater Chem B 3(20):4146–4154

    CAS  Google Scholar 

  39. Shi Y, Su P, Wang YY et al (2014) Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 130:259–264

    CAS  Google Scholar 

  40. Gao L, Giglio KM, Nelson JL et al (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593

    CAS  Google Scholar 

  41. Wang LJ, Min Y, Xu DD et al (2014) Membrane lipid peroxidation by the peroxidase-like activity of magnetite nanoparticles. Chem Commun 50(76):11147–11150

    CAS  Google Scholar 

  42. Lin YH, Huang YY, Ren JS et al (2014) Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. Npg Asia Mater 6

    Google Scholar 

  43. Yang YC, Wang YT, Tseng WL (2017) Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine Monophosphate: application to urinary protein sensing. ACS Appl Mater Interfaces 9:10069–10077

    Google Scholar 

  44. Vallabani NV, Karakoti AS, Singh S (2017) ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids Surf B Biointerfaces 153:52–60

    CAS  Google Scholar 

  45. Liu BW, Liu JW (2015) Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 7(33):13831–13835

    CAS  Google Scholar 

  46. Liu CH, Yu CJ, Tseng WL (2012) Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal Chim Acta 745:143–148

    CAS  Google Scholar 

  47. Kim YS, Jurng J (2013) A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles. Sensor Actuat B-Chem 176:253–257

    CAS  Google Scholar 

  48. Fan KL, Wang H, Xi JQ et al (2017) Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53(2):424–427

    CAS  Google Scholar 

  49. Dong YL, Zhang HG, Rahman ZU et al (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976

    CAS  Google Scholar 

  50. Ma M, Xie J, Zhang Y et al (2013) Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity. Mater Lett 105:36–39

    CAS  Google Scholar 

  51. An Q, Sun C, Li D et al (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces 5(24):13248–13257

    CAS  Google Scholar 

  52. Li KF, Chen CF, Chen CY et al (2015) Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation. Enzyme Microb Tech 72:72–78

    CAS  Google Scholar 

  53. Wang ZH, Chen M, Shu JX et al (2016) One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J Alloy Compd 682:432–440

    CAS  Google Scholar 

  54. Bhattacharya D, Baksi A, Banerjee I et al (2011) Development of phosphonate modified Fe 1–x MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta 86:337–348

    CAS  Google Scholar 

  55. Yu FQ, Huang YZ, Cole AJ et al (2009) The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 30(27):4716–4722

    CAS  Google Scholar 

  56. Zhang XQ, Gong SW, Zhang Y et al (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116

    CAS  Google Scholar 

  57. Dutta AK, Maji SK, Srivastava DN et al (2012) Peroxidase-like activity and amperometric sensing of hydrogen peroxide by Fe2O3 and Prussian Blue-modified Fe2O3 nanoparticles. J Mol Catal A-Chem 360:71–77

    CAS  Google Scholar 

  58. Dutta AK, Maji SK, Biswas P et al (2013) New peroxidase-substrate 3,5-di-tert-butylcatechol for colorimetric determination of blood glucose in presence of Prussian Blue-modified iron oxide nanoparticles. Sensor Actuat B-Chem 177:676–683

    CAS  Google Scholar 

  59. Liu QY, Zhang LY, Li H et al (2015) One-pot synthesis of porphyrin functionalized gamma-Fe2O3 nanocomposites as peroxidase mimics for H2O2 and glucose detection. Mat Sci Eng C-Mater 55:193–200

    CAS  Google Scholar 

  60. Roy A, Sahoo R, Ray C et al (2016) Soft template induced phase selective synthesis of Fe2O3 nanomagnets: one step towards peroxidase-mimic activity allowing colorimetric sensing of thioglycolic acid. Rsc Adv 6(38):32308–32318

    CAS  Google Scholar 

  61. Song LN, Huang C, Zhang W et al (2016) Graphene oxide-based Fe2O3 hybrid enzyme mimetic with enhanced peroxidase and catalase-like activities. Colloid Surface A 506:747–755

    CAS  Google Scholar 

  62. Kluenker M, Tahir MN, Ragg R et al (2017) Pd@Fe2O3 superparticles with enhanced peroxidase activity by solution phase epitaxial growth. Chem Mater 29(3):1134–1146

    CAS  Google Scholar 

  63. Chaudhari KN, Chaudhari NK, Yu JS (2012) Peroxidase mimic activity of hematite iron oxides (alpha-Fe2O3) with different nanostructres. Catal Sci Technol 2(1):119–124

    CAS  Google Scholar 

  64. Mu JS, Zhang L, Zhao M et al (2013) Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J Mol Catal A-Chem 378:30–37

    CAS  Google Scholar 

  65. Song YJ, Xia XF, Wu XF et al (2014) Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays. Angew Chem Int Edit 53(46):12451–12455

    CAS  Google Scholar 

  66. Mu JS, Zhang L, Zhao M et al (2014) Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl Mater Interfaces 6(10):7090–7098

    CAS  Google Scholar 

  67. Pirmohamed T, Dowding JM, Singh S et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46(16):2736–2738

    CAS  Google Scholar 

  68. Fan J, Yin JJ, Ning B et al (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6):1611–1618

    CAS  Google Scholar 

  69. Zhang JB, Zhuang J, Gao LZ et al (2008) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528

    CAS  Google Scholar 

  70. Wang N, Zhu LH, Wang DL et al (2010) Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533

    CAS  Google Scholar 

  71. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259

    CAS  Google Scholar 

  72. Li XK, Paier J (2016) Adsorption of water on the Fe3O4(111) surface: structures, stabilities, and vibrational properties studied by density functional theory. J Phys Chem C 120(2):1056–1065

    CAS  Google Scholar 

  73. Liu S, Lu F, Xing R et al (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chemistry 17(2):620–625

    CAS  Google Scholar 

  74. Wang H, Jiang H, Wang S et al (2014) Fe3O4-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. Rsc Adv 4(86):45809–45815

    CAS  Google Scholar 

  75. He J, Yang XF, Men B et al (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci China 39:97–109

    CAS  Google Scholar 

  76. Zhang ZJ, Zhang XH, Liu BW, Liu JW (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc. https://doi.org/10.1021/jacs.7b00601

    Article  Google Scholar 

  77. Peng FF, Zhang Y, Gu N (2008) Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chinese Chem Lett 19(6):730–733

    CAS  Google Scholar 

  78. Chang Q, Deng KJ, Zhu LH et al (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165(3–4):299–305

    CAS  Google Scholar 

  79. Zhang SX, Zhao XL, Niu HY et al (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167(1–3):560–566

    CAS  Google Scholar 

  80. Wu YH, Song MJ, Xin ZA et al (2011) Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology 22(22)

    Google Scholar 

  81. Gao Y, Wang GN, Huang H et al (2011) Fluorometric method for the determination of hydrogen peroxide and glucose with Fe3O4 as catalyst. Talanta 85(2):1075–1080

    CAS  Google Scholar 

  82. Wang XQ, Tu Q, Zhao B et al (2013) Effects of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials 34(4):1155–1169

    CAS  Google Scholar 

  83. Guan GJ, Yang L, Mei QS et al (2012) Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem 84(21):9492–9497

    CAS  Google Scholar 

  84. Liu Y, Yuan M, Qiao LJ et al (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396

    CAS  Google Scholar 

  85. Wei SL, Li JW, Liu Y (2015) Colourimetric assay for beta-estradiol based on the peroxidase-like activity of Fe3O4@mSiO(2)@HP-beta-CD nanoparticles. Rsc Adv 5(130):107670–107679

    CAS  Google Scholar 

  86. Liu SJ, Fu JW, Wang MH et al (2016) Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. J Colloid Interf Sci 469:69–77

    CAS  Google Scholar 

  87. Zhang ZX, Wang XL, Yang XR (2011) A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics. Analyst 136(23):4960–4965

    CAS  Google Scholar 

  88. He X, Tan L, Chen D et al (2013) Fe3O4-Au@mesoporous SiO2 microspheres: an ideal artificial enzymatic cascade system. Chem Commun 49(41):4643–4645

    CAS  Google Scholar 

  89. Liang MM, Fan KL, Pan Y et al (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312

    CAS  Google Scholar 

  90. Zeng T, Zhang XL, Wang SH et al (2014) Assembly of a nanoreactor system with confined magnetite core and shell for enhanced Fenton-like catalysis. Chem-Eur J 20(21):6474–6481

    CAS  Google Scholar 

  91. Shi Y, Huang J, Wang JN et al (2015) A magnetic nanoscale Fe3O4/P beta-CD composite as an efficient peroxidase mimetic for glucose detection. Talanta 143:457–463

    CAS  Google Scholar 

  92. Duan DM, Fan KL, Zhang DX et al (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141

    CAS  Google Scholar 

  93. Wang CQ, Qian J, Wang K et al (2016) Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191

    CAS  Google Scholar 

  94. Shi JH, Tong LZ, Liu DM et al (2012) Fabrication, structure, and properties of Fe3O4@C encapsulated with YVO4:Eu3+ composites. J Nanopart Res 14(4)

    Google Scholar 

  95. Wang H, Li S, Si YM et al (2014) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2(28):4442–4448

    CAS  Google Scholar 

  96. JaR Guivar, Fernandes EGR, Zucolotto V (2015) A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors. Talanta 141:307–314

    Google Scholar 

  97. Zhang K, Zuo W, Wang ZY et al (2015) A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. Rsc Adv 5(14):10632–10640

    CAS  Google Scholar 

  98. Lee Y, Garcia MA, Frey Huls NA et al (2010) Synthetic tuning of the catalytic properties of Au–Fe3O4 nanoparticles. Angew Chem 49(7):1271–1274

    CAS  Google Scholar 

  99. Sun X, Guo S, Chung CS et al (2013) A sensitive H2O2 assay based on dumbbell-like PtPd–Fe3O4 nanoparticles. Adv Mater 25(1):132–136

    CAS  Google Scholar 

  100. Cheng R, Li GQ, Cheng C et al (2015) Catalytic oxidation of 4-chlorophenol with magnetic Fe3O4 nanoparticles: mechanisms and particle transformation. Rsc Adv 5(82):66927–66933

    CAS  Google Scholar 

  101. Chen CX, Lu LX, Zheng Y et al (2015) A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal Methods UK 7(1):161–167

    CAS  Google Scholar 

  102. Gao YY, Li HX, Ou ZZ et al (2011) Enhancing the catalytic activity of peroxidase by adsorption onto Fe3O4 magnetic nanoparticle/multiwalled carbon nanotube composite surfaces. Acta Phys-Chim Sin 27(10):2469–2477

    CAS  Google Scholar 

  103. Niu HY, Dizhang Meng ZF et al (2012) Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles. J Hazard Mater 227:195–203

    Google Scholar 

  104. Ai X, Wang Y, Hou XD et al (2013) Advanced oxidation using Fe3O4 magnetic nanoparticles and its application in mercury speciation analysis by high performance liquid chromatography-cold vapor generation atomic fluorescence spectrometry. Analyst 138(12):3494–3501

    CAS  Google Scholar 

  105. Woo MA, Kim MI, Jung JH et al (2013) A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles. Int J Mol Sci 14(5):9999–10014

    Google Scholar 

  106. Wu XC, Zhang Y, Han T et al (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. Rsc Adv 4(7):3299–3305

    CAS  Google Scholar 

  107. Xiong LY, Zheng LZ, Xu JP et al (2014) A non-enzyme hydrogen peroxide biosensor based on Fe3O4/RGO nanocomposite material. Ecs Electrochem Lett 3(12):B26–B29

    CAS  Google Scholar 

  108. Wang W, Liu Y, Li TL et al (2014) Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem Eng J 242:1–9

    CAS  Google Scholar 

  109. Niu XY, Xu YY, Dong YL et al (2014) Visual and quantitative determination of dopamine based on CoxFe3–xO4 magnetic nanoparticles as peroxidase mimetics. J Alloy Compd 587:74–81

    CAS  Google Scholar 

  110. Ai X, Wu L, Zhang MN et al (2014) Analytical method for the determination of trace toxic elements in milk based on combining Fe3O4 nanoparticles accelerated UV Fenton-like digestion and solid phase extraction. J Agr Food Chem 62(34):8586–8593

    CAS  Google Scholar 

  111. Zhang XL, He ML, Liu JH et al (2014) Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Chin Sci Bull 59(27):3406–3412

    CAS  Google Scholar 

  112. Bhalkikar A, Gernhart ZC, Cheung CL (2015) Recyclable magnetite nanoparticle catalyst for one-pot conversion of cellobiose to 5-hydroxymethylfurfural in water. J Nanomater 2015:264037

    Google Scholar 

  113. Jia Y, Yu HM, Wu L et al (2015) Three birds with one Fe3O4 nanoparticle: integration of microwave digestion, solid phase extraction, and magnetic separation for sensitive determination of arsenic and antimony in fish. Anal Chem 87(12):5866–5871

    CAS  Google Scholar 

  114. Sang JL, Wu RL, Guo PP et al (2016) Affinity-tuned peroxidase-like activity of hydrogel-supported Fe3O4 nanozyme through alteration of crosslinking concentration. J Appl Polym Sci 133(8)

    Google Scholar 

  115. Nie DX, Shi GY, Yu YY (2016) Fe3O4 magnetic nanoparticles as peroxidase mimetics used in colorimetric determination of 2,4-dinitrotoluene. Chin J Anal Chem 44(2):179–184

    CAS  Google Scholar 

  116. Zhang ZX, Zhu H, Wang XL et al (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174(1–2):183–189

    CAS  Google Scholar 

  117. Sun HY, Jiao XL, Han YY et al (2013) Synthesis of Fe3O4-Au nanocomposites with enhanced peroxidase-like activity. Eur J Inorg Chem 1:109–114

    CAS  Google Scholar 

  118. Wang XS, Huang H, Li GQ et al (2014) Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants. Nanoscale Res Lett 9

    Google Scholar 

  119. Qian J, Yang XW, Jiang L et al (2014) Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sensor Actuat B-Chem 201:160–166

    CAS  Google Scholar 

  120. Xiao SW, Zhang CT, Chen R et al (2015) Selective oxidation of benzyl alcohol to benzaldehyde with H2O2 in water on epichlorohydrin-modified Fe3O4 microspheres. New J Chem 39(6):4924–4932

    CAS  Google Scholar 

  121. Wang YH, Zhou B, Wu S et al (2015) Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles. Talanta 134:712–717

    CAS  Google Scholar 

  122. Xiong F, Wang H, Feng YD et al (2015) Cardioprotective activity of iron oxide nanoparticles. Scientific Reports 5:8579

    CAS  Google Scholar 

  123. Qi CC, Zheng JB (2015) Novel nonenzymatic hydrogen peroxide sensor based on Fe3O4/PPy/Ag nanocomposites. J Electroanal Chem 747:53–58

    CAS  Google Scholar 

  124. Fan KL, Cao CQ, Pan YX et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464

    CAS  Google Scholar 

  125. Melnikova L, Pospiskova K, Mitroova Z et al (2014) Peroxidase-like activity of magnetoferritin. Microchim Acta 181(3–4):295–301

    CAS  Google Scholar 

  126. Cai Y, Cao CQ, He XQ et al (2015) Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size. Int J Nanomed 10:2619–2634

    CAS  Google Scholar 

  127. Yin GF, Huang ZB, Deng M et al (2011) Preparation and cell response of bio-mineralized Fe3O4 nanoparticles. J Colloid Interf Sci 363(1):393–402

    CAS  Google Scholar 

  128. Pan Y, Li N, Mu JS et al (2015) Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Appl Microbiol Biot 99(2):703–715

    Google Scholar 

  129. Guo FF, Yang W, Jiang W et al (2012) Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol 14(7):1722–1729

    CAS  Google Scholar 

  130. Zubir NA, Yacou C, Motuzas J et al (2014) Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep 4:4594

    Google Scholar 

  131. Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181(5–6):527–534

    CAS  Google Scholar 

  132. Gao Y, Wei Z, Li F et al (2014) Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 16(3):1255–1261

    CAS  Google Scholar 

  133. Chen JZ, Liu YJ, Zhu GX et al (2014) Ag@Fe3O4 nanowire: fabrication, characterization and peroxidase-like activity. Cryst Res Technol 49(5):309–314

    CAS  Google Scholar 

  134. Mirabello G, Lenders JJM, NaJM Sommerdijk (2016) Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 45(18):5085–5106

    CAS  Google Scholar 

  135. Yang X, Wang LN, Zhou GZ et al (2015) Electrochemical detection of H2O2 based on Fe3O4 nanoparticles with graphene oxide and polyamidoamine dendrimer. J Clust Sci 26(3):789–798

    CAS  Google Scholar 

  136. Liu B, Liu J (2017) Surface modification of nanozymes. Nano Research 10(4):1125–1148

    CAS  Google Scholar 

  137. Cheng XL, Jiang JS, Jiang DM et al (2014) Synthesis of rhombic dodecahedral Fe3O4 nanocrystals with exposed high-energy 110 facets and their peroxidase-like activity and lithium storage properties. J Phys Chem C 118(24):12588–12598

    CAS  Google Scholar 

  138. Fan HM, Yi JB, Yang Y et al (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3(9):2798–2808

    CAS  Google Scholar 

  139. Lee JW, Jeon HJ, Shin HJ et al (2012) Superparamagnetic Fe3O4 nanoparticles-carbon nitride nanotube hybrids for highly efficient peroxidase mimetic catalysts. Chem Commun 48(3):422–424

    CAS  Google Scholar 

  140. Zhang LH, Guo SJ, Dong SJ (2009) Nanoreactor of Fe3O4@SiO2 core-shell structure with nanochannels for efficient catalysis. J Biomed Nanotechnol 5(5):586–590

    CAS  Google Scholar 

  141. Hu SL, Zhang XQ, Zang FC et al (2016) Surface modified iron oxide nanoparticles as Fe source precursor to induce the formation of Prussian Blue nanocubes. J Nanosci Nanotechno 16(2):1967–1974

    CAS  Google Scholar 

  142. Liu QY, Li H, Zhao QR et al (2014) Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe(3)o(4) nanocomposites. Mat Sci Eng C-Mater 41:142–151

    Google Scholar 

  143. Tang ZW, Wu H, Zhang YY et al (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83(22):8611–8616

    CAS  Google Scholar 

  144. Gao LZ, Wu JM, Lyle S et al (2008) Magnetite nanoparticle-linked immunosorbent assay. J Phys Chem C 112(44):17357–17361

    CAS  Google Scholar 

  145. Wang X, Niessner R, Tang DP et al (2016) Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 912:10–23

    CAS  Google Scholar 

  146. Yang MZ, Guan YP, Yang Y et al (2014) Immunological detection of hepatocellular carcinoma biomarker GP73 based on dissolved magnetic nanoparticles. Colloid Surface A 443:280–285

    CAS  Google Scholar 

  147. Yang MZ, Guan YP, Yang Y et al (2013) Peroxidase-like activity of amino-functionalized magnetic nanoparticles and their applications in immunoassay. J Colloid Interf Sci 405:291–295

    CAS  Google Scholar 

  148. Yang MZ, Guan YP, Yang Y et al (2014) A sensitive and rapid immunoassay for mycoplasma pneumonia based on Fe3O4 nanoparticles. Mater Lett 137:113–116

    CAS  Google Scholar 

  149. Il Kim M, Kim MS, Woo MA et al (2014) Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 6(3):1529–1536

    Google Scholar 

  150. Perez JM (2007) Iron oxide nanoparticles—hidden talent. Nat Nanotechnol 2(9):535–536

    CAS  Google Scholar 

  151. Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P et al (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996–6002

    CAS  Google Scholar 

  152. Zhang LS, Huang R, Liu WP et al (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7

    CAS  Google Scholar 

  153. Park KS, Kim MI, Cho DY et al (2011) Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 7(11):1521–1525

    CAS  Google Scholar 

  154. Zhang ZX, Wang ZJ, Wang XL et al (2010) Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensor Actuat B-Chem 147(2):428–433

    CAS  Google Scholar 

  155. Kim MI, Shim J, Li T et al (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem-Eur J 17(38):10700–10707

    CAS  Google Scholar 

  156. Liu CH, Tseng WL (2011) Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Anal Chim Acta 703(1):87–93

    CAS  Google Scholar 

  157. Ma YH, Zhang ZY, Ren CL et al (2012) A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 137(2):485–489

    CAS  Google Scholar 

  158. Yang ZH, Chai YQ, Yuan R et al (2014) Hollow platinum decorated Fe3O4 nanoparticles as peroxidase mimetic couple with glucose oxidase for pseudobienzyme electrochemical immunosensor. Sensor Actuat B-Chem 193:461–466

    CAS  Google Scholar 

  159. Kim MI, Cho D, Park HG (2015) Colorimetric quantification of glucose and cholesterol in human blood using a nanocomposite entrapping magnetic nanoparticles and oxidases. J Nanosci Nanotechno 15(10):7955–7961

    CAS  Google Scholar 

  160. Zhang J, Yang C, Chen CX et al (2013) Determination of nitrite and glucose in water and human urine with light-up chromogenic response based on the expeditious oxidation of 3,3′,5,5′-tetramethylbenzidine by peroxynitrous acid. Analyst 138(8):2398–2404

    CAS  Google Scholar 

  161. Kim MI, Shim J, Li T et al (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137(5):1137–1143

    CAS  Google Scholar 

  162. Kim MI, Shim J, Parab HJ et al (2012) A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. J Nanosci Nanotechno 12(7):5914–5919

    CAS  Google Scholar 

  163. Zhang D, Zhao YX, Gao YJ et al (2013) Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J Mater Chem B 1(38):5100–5107

    CAS  Google Scholar 

  164. Zhuang J, Fan KL, Gao LZ et al (2012) Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol Pharmaceut 9(7):1983–1989

    CAS  Google Scholar 

  165. Kim SE, Zhang L, Ma K et al (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11(11):977–985

    CAS  Google Scholar 

  166. Zanganeh S, Hutter G, Spitler R et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994

    CAS  Google Scholar 

  167. Pan WY, Huang CC, Lin TT et al (2016) Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomed-Nanotechnol 12(2):431–438

    CAS  Google Scholar 

  168. Gao LZ, Liu Y, Kim D et al (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284

    CAS  Google Scholar 

  169. Huang DM, Hsiao JK, Chen YC et al (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651

    CAS  Google Scholar 

  170. Zhou G, Meng S, Li YH et al (2016) Optimal ROS signaling is critical for nuclear reprogramming. Cell Rep 15(5):919–925

    CAS  Google Scholar 

  171. Zhang Y, Wang ZY, Li XJ et al (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393

    CAS  Google Scholar 

  172. Shi SR, Wu S, Shen YR et al (2018) Iron oxide nanozyme suppress intracellular Salmonella Enteritidis growth and alleviates infection in vivo. Thernostics 8(22):6149–6162

    CAS  Google Scholar 

  173. Qin T, Ma RN, Yin YY et al (2019) Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics (in press). https://doi.org/10.7150/thno.37380

Download references

Acknowledgements

This work was supported by Young Elite Scientist Sponsorship Program by the National Key R&D Program of China (Grant No. 2018YFC1003500), CAST, Beijing Natural Science Foundation (Grant No. 5164037), China Postdoctoral Science Foundation (Grant No. 2015M570158) and the China Postdoctoral Science Special Foundation (Grant No. 2016T90143), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09030306), National Natural Science Foundation of China (Grant No. 81930050, 31530026 and 81671810), Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SMC013), and Natural Science Foundation of Jiangsu, China (BK20161333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizeng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, L., Fan, K., Yan, X. (2020). Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetics for Biomedical Application. In: Yan, X. (eds) Nanozymology. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1490-6_5

Download citation

Publish with us

Policies and ethics