Offer Based Auction Mechanism for Virtual Machine Allocation in Cloud Environment

  • Sasmita ParidaEmail author
  • Bibudhendu Pati
  • Suvendu Chandan Nayak
  • Chhabi Rani Panigrahi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1089)


Nowadays, the cloud service providers provide different resources for computation such as CPU power, memory to a wide range of users by virtual machines (VM). The VMs vary according to their capacity of resources, where each has a limited number of resources with a different price. For this, it is very much required to allocate the available resources efficiently among the requested users, So that there should be the minimization of the cost of resources and maximization of profit from the resources. Therefore, resource allocation is one of the most challenging issues in cloud computing and fog computing. Presently, in cloud computing VMs are allocated with a fixed price mechanism which is not minimizing the cost. In this paper, to solve such problems, we purposed a hybrid combinatorial auction-based approach for allocation of VMs. Here, we calculate the cost with maximum resource utilization which is beneficiary to users on demand.


Auction theory Virtual machine (VM) Combinatorial auction mechanism Cloud computing Resource allocation 


  1. 1.
    Rodriguez, M.A., Buyya, R.: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014)CrossRefGoogle Scholar
  2. 2.
    Mustafa, S., Nazir, B., Hayat, A., Khan, R., Madani, S.A.: Resource management in cloud computing: taxonomy, prospects, and challenges. Comput. Electr. Eng. 47, 186–203 (2015)CrossRefGoogle Scholar
  3. 3.
    Parida, S., Nayak, S.C., Tripathy, C.: Truthful resource allocation detection mechanism for cloud computing. In: ACM International Conference Proceeding Series (2015)Google Scholar
  4. 4.
    Nayak, S.C., Tripathy, C.: Deadline sensitive lease scheduling in cloud computing environment using AHP. J. King Saud Univ.-Comput. Inf. Sci. (2016)Google Scholar
  5. 5.
    Parida, S., Nayak, S.C.: Study of deadline sensitive resource allocation scheduling policy in cloud computing. Int. J. Comput. Sci. Mob. Comput. 3(12), 521–528 (2014)Google Scholar
  6. 6.
    Zaman, S.: Combinatorial auction-based virtual machine provisioning and allocation in clouds. Wayne State Univ. Diss. Pap. 720 (2013)Google Scholar
  7. 7.
    Nayak, S.C., Tripathy, C.: Deadline based task scheduling using multi-criteria decision-making in cloud environment. Ain Shams Eng. J. (2018)Google Scholar
  8. 8.
    Einav, L., Farronato, C., Levin, J.: Auctions versus posted prices in online markets. J. Polit. Econ. Forthcom. (2016)Google Scholar
  9. 9.
    Huang, J., Han, Z., Chiang, M., Poor, H.V.: Auction-based resource allocation for cooperative communications. IEEE J. Sel. Areas Commun. 26(7), 1226–1237 (2008)CrossRefGoogle Scholar
  10. 10.
    Fraser, M.D., Schaefer, M.E.: Auction allocation of computing resources. Commun. ACM 38(6), 88–102Google Scholar
  11. 11.
    Report, S.: A futures market iu. Commun. ACM 11(6), 449–451 (1968)CrossRefGoogle Scholar
  12. 12.
    Bertsekas, D.P.: The auction algorithm for the transportation problem. Ann. Oper. Res. 20, 67–96 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bogdanowicz, Z., Coleman, N.: Auction algorithm for weapons/targets pairing application. In: Conf. Numer. Math. FIRE Control BOMBING Syst. pp. 2–4 (1992)Google Scholar
  14. 14.
    Zavlanos, M.M., Spesivtsev, L., Pappas, G.J.: A distributed auction algorithm for the assignment problem. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1212–1217 (2018)Google Scholar
  15. 15.
    Feng, X., Chen, Y., Zhang, J., Zhang, Q., Li, B.: TAHES : a truthful double auction mechanism for heterogeneous spectrums. IEEE Trans. Wirel. Commun. 11(11), 4038–4047 (2012)CrossRefGoogle Scholar
  16. 16.
    Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services—a multi-attribute combinatorial approach. Eur. J. Oper. Res. 187(3), 943–961 (2008)CrossRefGoogle Scholar
  17. 17.
    Li, X., Ding, R., Liu, X., Liu, X., Zhu, E., Zhong, Y.: A dynamic pricing reverse auction-based resource allocation mechanism in cloud workflow systems. Sci. Program. 2016, 17–28 (2016) Article ID 7609460Google Scholar
  18. 18.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial auctions. In: Cramton, P., Shoham, Y., Steinberg, R. (eds.) pp. 29–55. MIT Press (2016)Google Scholar
  19. 19.
    Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine instances in clouds. J. Parallel Distrib. Comput. 73(4), 495–508 (2013)CrossRefGoogle Scholar
  20. 20.
    Prasad, V.G., Rao, S.A., Prasad, S.: A combinatorial auction mechanism for multiple resource procurement in cloud computing. Int. Conf. Intell. Syst. Des. Appl. ISDA 7161(c), 337–344 (2012)Google Scholar
  21. 21.
    Samimi, P., Teimouri, Y., Mukhtar, M.: A combinatorial double auction resource allocation model in cloud computing. Inf. Sci. 357, 201–216 (2016)CrossRefGoogle Scholar
  22. 22.
    Baranwal, G., Vidyarthi, D.P.: A fair multi-attribute combinatorial double auction model for resource allocation in cloud computing. J. Syst. Softw. 108, 60–76 (2015)CrossRefGoogle Scholar
  23. 23.
    Kumar, D., Baranwal, G., Raza, Z., Vidyarthi, D.P.: A systematic study of double auction mechanisms in cloud computing. J. Syst. Softw. 125, 234–255 (2017)CrossRefGoogle Scholar
  24. 24.
    Shirvastava, S.: Best fit based VM allocation for cloud resource allocation. 158(9), 25–27 (2017)Google Scholar
  25. 25.
    Chandan, S., Parida, S., Tripathy, C., Kumar, P.: An enhanced deadline constraint based task scheduling mechanism for cloud environment. J. King Saud Univ.-Comput. Inf. Sci. (2018)Google Scholar
  26. 26.
    Nayak S.C.: Multicriteria decision ‐ making techniques for avoiding similar task scheduling conflict in cloud computing. Int. J. Commun. Syst. 1–31 (2019)Google Scholar
  27. 27.
    Archer, A., Papadimitriou, C., Talwar, K., Tardos, É.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. Internet Math. 1(2), 129–150 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions 49(5) (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sasmita Parida
    • 1
    Email author
  • Bibudhendu Pati
    • 1
    • 2
  • Suvendu Chandan Nayak
    • 3
  • Chhabi Rani Panigrahi
    • 1
    • 2
  1. 1.Department of Computer ScienceRama Devi Women’s UniversityBhubaneswarIndia
  2. 2.Rama Devi Women’s UniversityBhubaneswarIndia
  3. 3.Department of Information TechnologyI-Nurture Education Solutions Pvt. Ltd.BengaluruIndia

Personalised recommendations