Advertisement

Characterization of Range for Smart Home Sensors Using Tsallis’ Entropy Framework

  • Sujit Bebortta
  • Amit Kumar Singh
  • Surajit Mohanty
  • Dilip SenapatiEmail author
Conference paper
  • 17 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1089)

Abstract

The deployment of sensor nodes (SNs) in smart homes induces multipath transmission of signals in indoor environments (IEs). These paths occur due to the presence of household utility objects, which produce several reflected communication paths between the sender and the receiver. In order to determine the effective position of a target SN in a wireless sensor network (WSN), certain localization schemes are required in conjunction with trilateration methods. Therefore, it is worthwhile to estimate the uncertainties in the range for time of arrival (TOA) localization of SNs subjected to non-line of sight (NLOS) conditions. In this article, we provide a technique to characterize the variations in the range corresponding to the TOA based on the well-known Tsallis’ entropy framework. In this model, the non-extensive parameter q characterizes the variations in the localization range caused due to multipath components. In this context, we optimize the Tsallis entropy subject to the two moment constraints (i.e., mean and variance) along with the normalization constraint. Our proposed model is in excellent agreement with the synthetic data in contrast to the mixture model. This paper also provides a new approach for estimating the parameters corresponding to the mixture model and the proposed \(q-\)Gaussian model by minimizing the Jensen–Shannon (JS) symmetric measure between the two models and the synthetic data.

Keywords

\(q-\)Gaussian distribution Tsallis entropy Mixture model Wireless sensor networks Localization JS measure 

References

  1. 1.
    Porcino, D., Hirt, W.: Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun. Mag. 41(7), 66–74 (2003)CrossRefGoogle Scholar
  2. 2.
    Oppermann, I., Hämäläinen, M., Iinatti, J. (eds.): UWB: Theory and Applications. Wiley & Sons (2005)Google Scholar
  3. 3.
    Rajput, N., Gandhi, N., Saxena, L.: Wireless sensor networks: apple farming in northern India. In: 2012 Fourth International Conference on Computational Intelligence and Communication Networks (CICN). IEEE (2012)Google Scholar
  4. 4.
    Gezici, S., et al.: Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 22(4), 70–84 (2005)CrossRefGoogle Scholar
  5. 5.
    Tsallis, C., et al.: Nonextensive statistical mechanics and economics. Physica A Stat. Mech. Appl. 324(1–2), 89–100 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tsallis, C., Non-extensive Statistical Mechanics: Construction and physical interpretation. In: Nonextensive Entropy Interdisciplinary Applications, pp. 1–52 (2004)Google Scholar
  7. 7.
    Senapati, D., Karmeshu: Generation of cubic power-law for high frequency intra-day returns: maximum Tsallis entropy framework. Digit. Signal Process. 48, 276–284 (2016)Google Scholar
  8. 8.
    Singh, A.K.: Karmeshu: Power law behavior of queue size: maximum entropy principle with shifted geometric mean constraint. IEEE Commun. Lett. 18(8), 1335–1338 (2014)CrossRefGoogle Scholar
  9. 9.
    Singh, A.K., Singh, H.P., Karmeshu: Analysis of finite buffer queue: maximum entropy probability distribution with shifted fractional geometric and arithmetic means. IEEE Commun. Lett. 19(2), 163–166 (2015)Google Scholar
  10. 10.
    Lee, J.-Y., Scholtz, R.A.: Ranging in a dense multipath environment using an UWB radio link. IEEE J. Sel. Areas Commun. 20(9), 1677–1683 (2002)CrossRefGoogle Scholar
  11. 11.
    Ghavami, M., Michael, L., Kohno, R.: Ultra wideband signals and systems in communication engineering. Wiley & Sons (2007)Google Scholar
  12. 12.
    Abe, S., Bagci, G.B.: Necessity of q-expectation value in nonextensive statistical mechanics. Phys. Rev. E 71(1), 016139 (2005)CrossRefGoogle Scholar
  13. 13.
    Saleh, A.A.M., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. 5(2), 128–137 (1987)CrossRefGoogle Scholar
  14. 14.
    Pietrzyk, M.M., von der Grün, T.: Experimental validation of a TOA UWB ranging platform with the energy detection receiver. 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE (2010)Google Scholar
  15. 15.
    Alavi, B., Pahlavan, K.: Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Commun. Lett. 10(4), 275–277 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhou, Y., et al.: Indoor elliptical localization based on asynchronous UWB range measurement. IEEE Trans. Instrum. Meas. 60(1), 248–257 (2011)CrossRefGoogle Scholar
  17. 17.
    Gerig, A., Vicente, J., Fuentes, M.A.: Model for non-Gaussian intraday stock returns. Phys. Rev. E 80(6), 065102 (2009)CrossRefGoogle Scholar
  18. 18.
    Beck, C., Cohen, E.G.D.: Superstatistics. Physica A Stat. Mech. Appl. 322, 267–275 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhao, W., et al.: Outage analysis of ambient backscatter communication systems. IEEE Commun. Lett. 22(8), 1736–1739 (2018)CrossRefGoogle Scholar
  20. 20.
    Beck, C., Cohen, E.G.D., Swinney, H.L.: From time series to superstatistics. Phys. Rev. E 72(5), 056133 (2005)CrossRefGoogle Scholar
  21. 21.
    Rajput, N.K., Ahuja, B., Riyal, M.K.: A novel approach towards deriving vocabulary quotient. Digit. Sch. Humanit. 33, 894–901 (2018)CrossRefGoogle Scholar
  22. 22.
    Riyal, M.K., et al.: Rank-frequency analysis of characters in Garhwali text: emergence of Zipf’s law. Curr. Sci. 110(3), 429 (2016)CrossRefGoogle Scholar
  23. 23.
    Schäfer, B., et al.: Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics. Nat Energy 3(2), 119 (2018)CrossRefGoogle Scholar
  24. 24.
    Osán, T.M., Bussandri, D.G., Lamberti, P.W.: Monoparametric family of metrics derived from classical JensenShannon divergence. Phys. A Stat. Mech. Appl. 495, 336–344 (2018)CrossRefGoogle Scholar
  25. 25.
    Papadimitriou, K., Sfikas, G., Nikou, C.: Tomographic image reconstruction with a spatially varying gamma mixture prior. J. Math. Imaging Vis. 1–11 (2018)Google Scholar
  26. 26.
    Kaiwartya, O., Abdullah, A.H., Cao, Y., Rao, R.S., Kumar, S., Lobiyal, D.K., Isnin, I.F., Liu, X., Shah, R.R.: T-MQM: testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—a case study. IEEE Sensors J. 16(23), 8649–8664 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sujit Bebortta
    • 1
  • Amit Kumar Singh
    • 2
  • Surajit Mohanty
    • 3
  • Dilip Senapati
    • 1
    Email author
  1. 1.Department of Computer Science Ravenshaw UniversityCuttackIndia
  2. 2.Department of Computer Science Ramanujan CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Department of Computer Science and Engineering DRIEMS TangiCuttackIndia

Personalised recommendations