Advertisement

Design and Investigation of Compact Microstrip Patch Array Antennas for Narrowband Applications

  • Swapnil S. ThoratEmail author
  • Sangeeta R. Chougule
Conference paper
  • 18 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1089)

Abstract

This paper investigates possibility of designing microstrip patch array antenna without feed network. A simple rectangular patch antenna, fed with coaxial feeding, on readily available FR4 substrate with larger ground of size 60 mm × 60 mm is designed to operate in C band. Improvement in gain is achieved by designing multiple-level array of 2 × 2, separated by air gap on second layer of FR4 on top of first antenna, and its results are optimized by doing parametric analysis. Gain of the proposed antenna system is observed to be improved in three-layer antenna up to 9.63 dB than simple rectangular patch antenna. VSWR bandwidth of proposed antenna is 500 MHz.

Keywords

Multilayer Array Parasitic feeding Space feed Electromagnetic coupling Microstrip patch antenna 

References

  1. 1.
    Falahati, A., NaghshvarianJahromi, M.: Wideband fan-beam low-sidelobe array antenna using grounded reflector for DECT, 3G, and ultra-wideband wireless applications. IEEE Trans. Antennas Propag. 61(2) (2013)Google Scholar
  2. 2.
    Zhang, B., Zhang, Y.P.: Analysis and synthesis of millimeter-wave microstrip grid-array antennas. IEEE Antennas Propag. Mag. 53(6) (2011)Google Scholar
  3. 3.
    Li, J., Wang, P., Jiang, T., Bao, L., He, Z.: UHF stacked hilbert antenna array for partial discharge detection. IEEE Trans. Antennas Propag. 61(11) (2013)Google Scholar
  4. 4.
    Ghassemi, N., Wu, K., Claude, S., Zhang, X., Bornemann, J.: Low-cost and high-efficient W-band substrate integrated waveguide antenna array made of printed circuit board process. IEEE Trans. Antennas Propag. 60(3) (2012)Google Scholar
  5. 5.
    Stoneback, M., Stoneback, M., Kuga, Y.: Feasibility study of a wirelessly controlled and powered space-fed phased array antenna. IEEE Trans. Antennas Propag. 61(12) (2013)Google Scholar
  6. 6.
    Angeletti, P.: Multiple beams from planar arrays. IEEE Trans. Antennas Propag. 62 (2014)Google Scholar
  7. 7.
    Blanco, D., Llombart, N., Rajo-Iglesias, E.: On the use of leaky wave phased arrays for the reduction of the grating lobe level. IEEE Trans. Antennas Propag. 62 (2014)Google Scholar
  8. 8.
    Forsyth, W.E., Shiroma, W.A.: A retrodirective antenna array using a spatially fed local oscillator. IEEE Trans. Antennas Propag. 50(5) (2002)Google Scholar
  9. 9.
    Kang, W., Kim, K., Kim, W.: Design of a 16-port shared-arm dipole array for monostatic imaging radar. IEEE Trans. Antennas Propag. 62(1), 454–459 (2014)Google Scholar
  10. 10.
    Abbak, M., Tekin, I.: RFID coverage extension using microstrip-patch antenna array. IEEE Antennas Propag. Mag. 51(1) (2009)Google Scholar
  11. 11.
    Peng, Z., Hu, T., Cui, W., Huangfu, J., Li, C., Ran, L.: Unconventional beamforming for quasi-hemispheric coverage of a phased array antenna. IEEE Antennas Wireless Propag. Lett. 12, 1654–1657 (2013). AWPL-11-13-1588Google Scholar
  12. 12.
    Nashaat, D., Elsadek, H.A., Abdallah, E.A.: Ultrawide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG). IEEE Trans. Antennas Propag. 59(5) (2011)Google Scholar
  13. 13.
    Karmakar, N.C., Bialkowski, M.E.: Microstrip circular phased array design and development using microwave antenna CAD tools. IEEE Trans. Antennas Propag. 50(7) (2002)Google Scholar
  14. 14.
    Seki, T., Honma, N.: A 60-GHz multilayer parasitic microstrip array antenna on LTCC substrate for system-on-package. IEEE Microwave Wireless Compon. Lett. 15(5) (2005)Google Scholar
  15. 15.
    Rezk, M., Kim, W., Yun, Z., Iskander, M.F.: Performance comparison of a novel hybrid smart antenna system versus the fully adaptive and switched beam antenna arrays. IEEE Antennas Wireless Propag. Lett. 4 (2005)Google Scholar
  16. 16.
    Álvarez-Folgueiras, M., Rodríguez-González, J.A., Ares-Pena, F.: Low-sidelobe patterns from small, low-loss uniformly fed linear arrays illuminating parasitic dipoles. IEEE Trans. Antennas Propag. 57(5) (2009)Google Scholar
  17. 17.
    Scott, H., Fusco, V.F.: 360° electronically controlled beam scan array. IEEE Trans. Antennas Propag. 52(1) (2004)Google Scholar
  18. 18.
    Nikkhah, M.R., Rashed-Mohassel, J., Kishk, A.A.: Compact low-cost phased array of dielectric resonator antenna using parasitic elements and capacitor loading. IEEE Trans. Antennas Propag. 61(4) (2013)Google Scholar
  19. 19.
    Zuo, S.-L., Zhang, Z.-Y., Yang, J.-W.: Planar meander monopole antenna with parasitic strips and sleeve feed for DVB-H/LTE/GSM850/900 operation in the mobile phone. IEEE Antennas Wireless Propag. Lett. 12 (2013)Google Scholar
  20. 20.
    Balanis, C.A.: Antenna Theory—Analysis and Design, 3rd edn. WileyGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Bharati Vidyapeeth (Deemed to be University) College of EngineeringPuneIndia
  2. 2.Kolhapur Institute of TechnologyKolhapurIndia

Personalised recommendations