Location-Based Alert System Using Twitter Analytics

  • C. S. LifnaEmail author
  • M. Vijayalakshmi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1090)


In today’s industry, Enterprises are rigorously blending Social Intelligence with Business Intelligence to achieve Competitive Intelligence. So, the ongoing process of Social Analytics cannot be overlooked. If used judiciously, Social Analytics can even address many sensitive social issues such as violation of Human Rights. The objective of the study was to design a platform for Location-Based Alert System which can aid Government bodies in taking corrective action against violation of Human Rights. The locations extracted from tweets were successfully plotted on to Indian map. This visualization revealed the importance of integrating News Analytics with Social Analytics for deriving precise inferences about event.


Social Analytics  Twitter Location Association Rule Mining Human Rights  



The authors gratefully acknowledge the support extended by University of Mumbai as Minor Research Project Grant No. 463 (Reference No. APD/237/16/2017 dated 13 January 2017).


  1. 1.
    Etlinger, S., and C. Li. 2011. A Framework for Social Analytics. San Francisco, USA: Altimeter Group.Google Scholar
  2. 2.
    Lau, R.Y., C. Li, and S.S. Liao. 2014. Social Analytics: Learning Fuzzy Product Ontologies for Aspect-Oriented Sentiment Analysis. Decision Support Systems 65: 80–94.CrossRefGoogle Scholar
  3. 3.
    Charu, C. 2011. An Introduction to Social Network Data Analytics. In Social Network Data Analytics, 1–15. Berlin: Springer.Google Scholar
  4. 4.
    Parsons, T., M. Ratclifie, R. Crumpler, W. Kessler, and K. Freytag. 2014. Social Analytics System and Method for Analyzing Conversations in Social Media. U.S. Patent No. 8,682,723.Google Scholar
  5. 5.
    Ferguson, R., and S.B. Shum. 2012. Social Learning Analytics: Five Approaches. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 23–33. ACM.Google Scholar
  6. 6.
    Nadeem, M.: Social Customer Relationship Management (SCRM): How Connecting Social Analytics to Business Analytics Enhances Customer Care and Loyalty?Google Scholar
  7. 7.
    Amer-Yahia, S., S. Anjum, A. Ghenai, A. Siddique, S. Abbar, S. Madden, A. Marcus, M. El-Haddad. 2012. MAQSA: A System for Social Analytics on News. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, 653–656.Google Scholar
  8. 8.
    Castillo, C., M. El-Haddad, J. Pfefier, M. Stempeck. 2014. Characterizing the Life Cycle of Online News Stories Using Social Media Reactions. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing, 211– 223. ACM (2014).Google Scholar
  9. 9.
    Ciulla, F., D. Mocanu, A. Baronchelli, B. Gonficalves, N. Perra, A. Vespignani. 2012. Beating the News Using Social Media: The Case Study of American Idol. EPJ Data Science 1 (1).Google Scholar
  10. 10.
    Bandari, R., S. Asur, and B.A. Huberman. 2012. The Pulse of News in Social Media: Forecasting Popularity. ICWSM 12: 26–33.Google Scholar
  11. 11.
    Stieglitz, S., and L. Dang-Xuan. 2013. Social Media and Political Communication: A Social Media Analytics Framework. Social Network Analysis and Mining 3 (4): 1277–1291.CrossRefGoogle Scholar
  12. 12.
    Crooks, A., A. Croitoru, A. Stefanidis, and J. Radzikowski. 2013. # Earthquake: Twitter as a Distributed Sensor System. Transactions in GIS 17 (1): 124–147.CrossRefGoogle Scholar
  13. 13.
    MacEachren, A.M., A. Jaiswal, A.C. Robinson, S. Pezanowski, A. Savelyev, P. Mitra, X. Zhang, J. Blanford. 2011. Senseplace2: Geotwitter Analytics Support for Situational Awareness. In Visual Analytics Science and Technology (VAST), 181–190. IEEE.Google Scholar
  14. 14.
    Althofi, T., D. Borth, J. Hees, A. Dengel. Analysis and Forecasting of trending topics in online media streams. In Proceedings of the 21st ACM International Conference on Multimedia, 907–916. ACM.Google Scholar
  15. 15.
    Mathioudakis, M., and N. Koudas, Twittermonitor: Trend Detection over the Twitter Stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, 1155–1158. ACM.Google Scholar
  16. 16.
    Gaber, M.M., A. Zaslavsky, S. Krishnaswamy. Data Stream Mining. In Data Mining and Knowledge Discovery Handbook, 759–787. Berlin: Springer.Google Scholar
  17. 17.
    Lee, K., D. Palsetia, R. Narayanan, M.M.A., Agrawal, A., Choudhary, A. 2011. Twitter Trending Topic Classification. In Data Mining Workshops (ICDMW), 251–258. IEEE.Google Scholar
  18. 18.
    Tare, M., I. Gohokar, J. Sable, D. Paratwar, R. Wajgi. 2014. Multi-class Tweet Categorization Using Map Reduce Paradigm. International Journal of Computer Trends and Technology (IJCTT) 9 (2), (2014).Google Scholar
  19. 19.
    Fiaidhi, J., S. Mohammed, A. Islam, S. Fong, and T.H. Kim. 2013. Developing a Hierarchical Multi-label Classifier for Twitter Trending Topics. International Journal of u-and e-Service, Science and Technology 6 (3): 1–12.Google Scholar
  20. 20.
    Becker, H., M. Naaman, and L. Gravano. 2011. Beyond Trending Topics: Real-World Event Identification on Twitter. ISWSM 11 (2011): 438–441.Google Scholar
  21. 21.
    Psallidas, F., H. Becker, M. Naaman, and L. Gravano. 2013. Effective Event Identification in Social Media. IEEE Data Engineering 36 (3): 42–50.Google Scholar
  22. 22.
    Rosa, H., J.P. Carvalho, F. Batista. 2014. Detecting a Tweet’s Topic Within a Large Number of Portuguese Twitter trends. In OASIcs-OpenAccess Series in Informatics, Vol. 38.Google Scholar
  23. 23.
    Han, J., J. Pei, M. Kamber. 2009. Data Mining: Concepts and Techniques. Amsterdam: Elsevier.Google Scholar
  24. 24.
    Jain, S., A.P.S. Jain, A. Jain. 2013. An Assessment of fuzzy Temporal Association Rule Mining. IJAIEM.Google Scholar
  25. 25.
    Shirsath, P.A., V.K. Verma. 2013. A Recent Survey on Incremental Temporal Association Rule Mining. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 2278–3075.Google Scholar
  26. 26.
    Wang-Wei, Junheng-Huang. 2007. Efficient Algorithm for Mining Temporal Association Rule. The International Journal of Computer Science and Network Security (IJCSNS) 7 (4): 268–271, (2007).Google Scholar
  27. 27.
    Chang, C.C., Y.C. Li, J.S. Lee. 2005. An Efficient Algorithm for Incremental Mining of Association Rules. In Proceedings of the 15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications, 3–10. IEEE.Google Scholar
  28. 28.
    Kuthadi, V.M. 2013. A New Data Stream Mining Algorithm for Interestingness-Rich Association Rules. Journal of Computer Information Systems 53 (3): 14–27.CrossRefGoogle Scholar
  29. 29.
    Dhanda, M. 2011. An Approach to Extract Efficient Frequent Patterns from Transactional Database. International Journal of Engineering Science and Technology, 3 (7).Google Scholar
  30. 30.
    Khan, M.S., M. Muyeba, and F. Coenen. 2008. A Weighted Utility Framework for Mining Association Rules. In Second UKSIM European Symposium on Computer Modeling and Simulation, 87–92. IEEE.Google Scholar
  31. 31.
    Lal, M., and K. Asnani. 2014. Aspect extraction and segmentation in opinion mining. International Journal of Engineering and Computer Science 3 (05).Google Scholar
  32. 32.
    Falleri, J.R., M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao. 2010. Automatic Extraction of a Wordnet-Like Identifier Network from Software. In Program Comprehension (ICPC), 4–13. IEEE.Google Scholar
  33. 33.
    Finkel, J.R., T. Grenager, and C. Manning. 2005. Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 363–370. Association for Computational Linguistics.Google Scholar
  34. 34.
    Lifna, C.S., and M. Vijayalakshmi. 2015. Identifying Concept-Drift in Twitter Streams. Procedia Computer Science 45: 86–94.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.VES Institute of TechnologyMumbaiIndia

Personalised recommendations