Biotechnology for Cotton Improvement

  • Khezir Hayat
  • Adem Bardak
  • Dony Parlak
  • Farzana Ashraf
  • Hafiz Muhammad Imran
  • Hafiz Abdul Haq
  • Muhammad Azam Mian
  • Zahid Mehmood
  • Muhammad Naeem Akhtar


Cotton is a natural fiber crop in the world. The ever-increasing demands of the fast-growing population for food, feed, fiber, and fuel, which is estimated to be 11 billion all over the world in 2050, urge to enhance food production 2–3 times. But limitations in conventional breeding program for genetic upgrading are due to limited knowledge about yield and fiber traits. Use of molecular markers and exploitation of DNA polymorphism is one of the noteworthy developments in the field of molecular genetics. Availability of reference genome of G. raimondii L., G. arboreum L., and next-generation sequencing routed it on fast track for exploring variability among genotypes of cotton. Genomic research could be quantitative trait loci mapping, genome-wide associations, and next-generation sequencing approaches.


Marker-assisted selection Quantitative trait locus Deoxyribonucleic acid Simple sequence repeat 



Amplified fragment length polymorphism


Cleaved amplified polymorphic sequence


Deoxyribonucleic acid


Expressed sequence tags


Genotyping by sequencing


Genetically modified


Genetically modified organisms


Genome-wide association


International Cotton Advisory Committee


International Service for the Acquisition of Agri-biotech Applications


Inter-simple sequence repeat


Marker-assisted selection


Million metric tons


Polymerase chain reaction


Quantitative trait locus


Random amplified polymorphic DNAs


Restriction fragment length polymorphism


Sequence characterized amplified region


Single nucleotide polymorphism


Simple sequence repeat


Sequence-tagged site


United State Department of Agriculture


  1. Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84Google Scholar
  2. Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102(2–3):222–229CrossRefGoogle Scholar
  3. Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92(6):478–487PubMedCrossRefGoogle Scholar
  4. Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401–417PubMedCrossRefGoogle Scholar
  5. Abdurakhmonov IY, Buriev ZT, Shermatov SE (2011) Marker-assisted selection for complex fiber traits in cotton. In: 5th World Cotton Research Conference, Special session of ICGI, Mumbai, India 7–12 November, 2011Google Scholar
  6. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631PubMedCrossRefGoogle Scholar
  7. Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613Google Scholar
  8. Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415CrossRefGoogle Scholar
  9. Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16Google Scholar
  10. Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610CrossRefGoogle Scholar
  11. Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6Google Scholar
  12. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3–4):1664–1669Google Scholar
  13. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192Google Scholar
  14. Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160Google Scholar
  15. Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823Google Scholar
  16. Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agr Syst 167:213–222Google Scholar
  17. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560PubMedCrossRefGoogle Scholar
  18. Aslam M, Jiang C, Wright R, Paterson AH (1999) Identification of molecular markers linked to leaf curl virus disease resistance in cotton. Pak J Biol Sci 2(1):124–126CrossRefGoogle Scholar
  19. Ayeh KO (2008) Expressed sequence tags (ESTs) and single nucleotide polymorphisms (SNPs): emerging molecular marker tools for improving agronomic traits in plant biotechnology. Afr J Biotechnol 7(4):331–341Google Scholar
  20. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376PubMedPubMedCentralCrossRefGoogle Scholar
  21. Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (eds) Association mapping in plants Springer, New York, NY, pp 95–102CrossRefGoogle Scholar
  22. Berard A, Le Paslier MC, Dardevet M, Exbrayat VF, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374PubMedCrossRefGoogle Scholar
  23. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664CrossRefGoogle Scholar
  24. Bhatti (2018) Association analysis and mapping of fiber quality in cotton. Ph. D Thesis submitted to Kahramanmaras Sutcu Imam University, TurkeyGoogle Scholar
  25. Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121PubMedPubMedCentralCrossRefGoogle Scholar
  26. Blake TK, Kadyrzhanova D, Shepherd KW, Islam AKMR, Langridge PL, McDonald CL, Talbert LE (1996) STS PCR markers appropriate for wheat-barley introgression. Theor Appl Genet 82:715–721Google Scholar
  27. Bolek Y (2003) Status of genome mapping and use in cotton improvement. KSÜ Fen ve Mühendislik Dergisi 6(2):72–79Google Scholar
  28. Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590CrossRefGoogle Scholar
  29. Bolek Y, Hayat K, Bardak A, Azhar MT (2016) Molecular breeding of cotton. In: Adurakhmonov IY (ed) Cotton research. Intech Publishers, pp 123–166Google Scholar
  30. Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19(3):209–215CrossRefGoogle Scholar
  31. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen ZJ et al (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedPubMedCentralCrossRefGoogle Scholar
  34. Coetes DJ, Byrne M (2005) Genetic variation in plant populations. Chapter 9. In: Henry RJ (ed) Plant diversity and evolutions-genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, pp 139–164CrossRefGoogle Scholar
  35. Collard BC, Mackill DJ (2008) Marker assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572CrossRefGoogle Scholar
  36. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  37. Cuadrado A, Schwardzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107:587–594PubMedCrossRefGoogle Scholar
  38. Cuming DS, Altan F, Akdemir H, Tosun M, Gurel A, Tanyolac B (2015) QTL analysis of fiber color and fiber quality in naturally green colored cotton (Gossypium hirsutum L.). Turk J Field Crops 20(1):49–58Google Scholar
  39. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a randommated recombinant inbred population in upland cotton (Gossypium hirsutum L.). BMC Genomics 15:397PubMedPubMedCentralCrossRefGoogle Scholar
  41. Farahani F, Sheidai M, Koohdar F (2018) Genetic finger printing of cotton cultivars by ISSR molecular markers. Genetika 50(2):627–634CrossRefGoogle Scholar
  42. Feng CD, Stewart JMD, Zhang JF (2005) STS markers linked to the Rf1 fertility restore gene of cotton. Theor Appl Genet 110(2):237–243PubMedCrossRefGoogle Scholar
  43. Geng C, Gong Z, Huang JQ, Zhang ZC (1995) Identification of difference between cotton cultivars (G. hirsutum) using the RAPD method. Jiangsu J Agric Sci 11:21–24Google Scholar
  44. Guo G, Shen X, Zhang T, Yu JZ, Kohel RJ (2003) Development of scar marker linked to a major qtl for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Sci 43:2252–2256CrossRefGoogle Scholar
  45. Guo W, Wang W, Zhou B, Zhang T (2006) Cross species transferability of G. arboreum- derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 112:1573–1581PubMedCrossRefGoogle Scholar
  46. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390CrossRefGoogle Scholar
  47. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 61:761–769CrossRefGoogle Scholar
  48. Hughes AL, Friedman R (2005) Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana. J Mol Evol 60:247–256PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hu S, Wu S, Wang Y, Zhao H, Yuanyan Z (2014) Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation. Sci World J. Article ID 817080Google Scholar
  50. Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD et al (2015) Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda) 5:1187–1209CrossRefGoogle Scholar
  51. Hussain A, Ibrahim M, Tajammal MA, Naz MA (2005) Cotton varieties of Pakistan. Federal Seed Certification and Registration Department. Ministry of Food, Agriculture & Livestock (MINFAL), Government of PakistanGoogle Scholar
  52. International Cotton Advisory Committee (2018).
  53. International Service for the Acquisition of Agri-biotech (ISAA) (2017).
  54. Islam MS, Thyssen GN, Jenkins JN et al (2015) Detection, validation, and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton. Plant Genome 8(1):1–10CrossRefGoogle Scholar
  55. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis mapbased cloning in the post-genome era. Plant Physiol 129:440–450PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jia Y, Sun J, Wang X, Zhou Z, Pan Z, He S et al (2014) Molecular diversity and association analysis of drought and salt tolerance in Gossypium hirsutum L. germplasm. J Integr Agric 13:1845–1853CrossRefGoogle Scholar
  57. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vasquez A, Karp A (1997) Reproducibility testing of RAPIDs, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390Google Scholar
  58. Joshi CP, Nguyen HT (1993) RAPD (random amplified polymorphic DNA) analysis based inter varietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103CrossRefGoogle Scholar
  59. Jost A (1941) Sexual reproduction in yeast. Lecture at Technical Institute Lwow, Poland.Google Scholar
  60. Jubrael JM, Udupa SM, Baum M (2005) Assessment of AFLP-based genetic relationships among date palm (Phoenix dactylifera L.) varieties of Iraq. J Am Soc Hortic Sci 130(3):442–447CrossRefGoogle Scholar
  61. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334CrossRefGoogle Scholar
  62. Khan SA, Hussain D, Askari E, Stewart JMD, Malik KA, Zafar Y (2000) Molecular phylogeny of Gossypium species by DNA fingerprinting. Theor Appl Genet 101(5–6):931–938CrossRefGoogle Scholar
  63. Kim CG, Jeong SC, Yoon WK, Park KW, Choi KH, Kim HM (2009) Development of genetically modified crops based on considerations of risk assessment and management. J Plant Biotechnol 36:360–365CrossRefGoogle Scholar
  64. Kingm RC, Stansfield WD (1990) A dictionary of genetics, 4th edn. Oxford University Press, New York, NY, p 188Google Scholar
  65. Koebner RM, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21:59–63PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome 46:612–626PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lee SW (2011) Strategies for the development of GM crops in accordance with the environmental risk assessment (I). J Plant Biotechnol 38:125–129CrossRefGoogle Scholar
  69. Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572PubMedCrossRefGoogle Scholar
  70. Li C, Dong Y, Zhao T, Li L, Li C, Yu E, Mei L, Daud MK, He Q, Chen J, Zhu S (2016) Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci 7:1356PubMedPubMedCentralGoogle Scholar
  71. Liu D, Guo X, Lin Z, Nie Y, Zhang X (2006) Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genet Resour Crop Evol 53(6):1145–1152CrossRefGoogle Scholar
  72. Liu Z, Sun Q, Ni Z, Yang T, McIntosh RA (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219CrossRefGoogle Scholar
  73. Lu YL, Yan JB, Guimarães CT, Taba S, Hao ZF, Gao SB et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  74. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MAGoogle Scholar
  75. Mackill DJ, Nguyen HT, Zhang J (1999) Use of molecular markers in plant improvement programs for rainfed lowland rice. Field Crops Res 64:177–185CrossRefGoogle Scholar
  76. Mei Y, Yu J, Xue A, Fan S, Song M, Pang C, Pei W, Yu S, Zhu J (2017) Dissecting genetic network of fruit branch traits in upland cotton by association mapping using SSR markers. PLoS One 12(1):e0162815PubMedPubMedCentralCrossRefGoogle Scholar
  77. Michalek W, Weschke W, Pleissner KP, Graner A (2002) EST analysis in barley defines a unigene set comprising 4,000 genes. Theor Appl Genet 104:97–103PubMedCrossRefGoogle Scholar
  78. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nair S, Bentur JS, Rao UP, Mohan M (1995) DNA markers tightly linked to a gall midge resistance gene (Gm2) are potentially useful for marker-aided selection in rice breeding. Theor Appl Genet 91:68–73PubMedCrossRefGoogle Scholar
  80. Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34(1):77–88PubMedCrossRefGoogle Scholar
  81. Palanga KK, Jamshed M, Rashid MHO, Gong J, Li J, Iqbal MS, Liu A, Shang H, Shi Y, Chen T, Ge Q, Zhang Z, Dilnur T, Li W, Li P, Gong W, Yuan Y (2017) Quantitative trait locus mapping for verticillium wilt resistance in an upland cotton recombinant inbred line using snp-based high density genetic map. Front Plant Sci 8:382PubMedPubMedCentralCrossRefGoogle Scholar
  82. Paran I, Michelmore RW (1993) Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993PubMedCrossRefGoogle Scholar
  83. Park SH, Cho J, Kim YC, Kim SM, Lim SM, Lee GS (2018) National program for developing biotech crops in Korea. Plant Breed Biotechnol 6(3):171–176CrossRefGoogle Scholar
  84. Poland JA, Trevor WR (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102CrossRefGoogle Scholar
  85. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two enzyme genotyping-by-sequencing approach. PLoS One 7:e32253PubMedPubMedCentralCrossRefGoogle Scholar
  86. Qin H, Chen M, Yi X, Bie S, Zhang C, Zhang Y, Lan J, Meng Y, Jiao C (2015) Identification of associated SSR markers for yield component and fiber quality traits based on frame map and upland cotton collections. PLoS One 10(1):e0118073PubMedPubMedCentralCrossRefGoogle Scholar
  87. Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123Google Scholar
  88. Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton (Gossypium hirsutum L.) cultivars/genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144CrossRefGoogle Scholar
  89. Rahman M, Asif M, Ullah I, Malik KA, Zafar Y (2005) Overview of cotton genomic studies in Pakistan. In: Plant & Animal Genome Conference XIII. San Diego, CA. USAGoogle Scholar
  90. Rahman M, Zafar Y, Paterson AH (2009) Gossypium DNA markers: types, numbers and uses. In: Paterson AH (ed) Genetics and genomics of cotton. Springer, Dordrecht, pp 101–139CrossRefGoogle Scholar
  91. Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94–113CrossRefGoogle Scholar
  92. Roychowhury R, Taoutaou A, Khalid RK, Mohamed RAG, Jagatpati T (2014) Crop improvement in the ear of climate change. In: Roychowhury (ed) I.K International Publication house LtdGoogle Scholar
  93. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722CrossRefGoogle Scholar
  94. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933PubMedCrossRefGoogle Scholar
  95. Schulmann AH (2007) Molecular markers to assess genetic diversity. Euphytica 158(3):313–321CrossRefGoogle Scholar
  96. Schuster I (2011) Marker-assisted selection for quantitative traits. Crop Breed Appl Biotechnol S1:50–55CrossRefGoogle Scholar
  97. Shanti ML, George MLC, Cruz CMV, Bernardo MA, Nelson RJ, Reddy JN, Leung H, Sridhar R (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85:506–512PubMedCrossRefGoogle Scholar
  98. Sheidail M, Shahriari ZH, Rokinzadeh H, Nourmohammadi Z (2007) RAPD and cytogenetic study of some tetraploid cotton (Gossypium hirsutum L) cultivars and their hybrids. Cytologia 72:77–82CrossRefGoogle Scholar
  99. Sica M, Gamba G, Montieri S, Gaudio L, Aceto S (2005) ISSR markers show differentiation among Italian populations of Asparagus acutifolius L. BMC Genet 6:17PubMedPubMedCentralCrossRefGoogle Scholar
  100. Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315CrossRefGoogle Scholar
  101. Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39:1571–1583CrossRefGoogle Scholar
  102. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264CrossRefGoogle Scholar
  103. Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262Google Scholar
  104. Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43CrossRefGoogle Scholar
  105. Thomas W (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142:1–12CrossRefGoogle Scholar
  106. Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani S, Landi P (2003) Searching for QTLs controlling root traits in maize: a critical appraisal. Plant and Soil 255:35–54CrossRefGoogle Scholar
  107. Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber traits in an intraspecific population. J Cotton Sci 4(3):161–170Google Scholar
  108. Ulloa M, Meredith WR Jr, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208PubMedCrossRefGoogle Scholar
  109. United nation organization.
  110. United States Department of Agriculture (USDA) (2013) Cotton and wool outlook. Available at:
  111. Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3–4):386–391Google Scholar
  112. Van Deynze V, Stoffel AK, Lee M, Wilkins TA, Kozik A, Cantrell RG, Yu JZ, Kohel RJ, Stelly DM (2009) Sampling nucleotide diversity in cotton. BMC Plant Biol 9:125PubMedPubMedCentralCrossRefGoogle Scholar
  113. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  114. Wang F, Stewart JMD, Zhang J (2007) Molecular markers linked to the Rf2 fertility restorer gene in cotton. Genome 50(9):818–824PubMedCrossRefGoogle Scholar
  115. Wang Q et al (2015) Genome-wide mining, characterization, and development of microsatellite markers in Gossypium species. Sci Rep 5:10638PubMedPubMedCentralCrossRefGoogle Scholar
  116. Waqas M, Khan AA, Ashraf J, Qayyum A, Ahmad MQ, Iqbal MZ, Abbasi GH (2014) Molecular markers and cotton genetic improvement: current status and future prospects. Scientific World Journal 2014:607091Google Scholar
  117. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedPubMedCentralCrossRefGoogle Scholar
  118. Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agr Res 54:1065–1079CrossRefGoogle Scholar
  119. Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149(4):1987–1996PubMedPubMedCentralGoogle Scholar
  120. Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3(2):e38PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144(1-2):91–99CrossRefGoogle Scholar
  122. Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61CrossRefGoogle Scholar
  123. Zhang X, Meng Z, Zhou T, Sun G, Shi J, Yu Y, Zhang R, Guo S (2012) Mitochondrial SCAR and SSR markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton. Plant Breed 131(4):563–570CrossRefGoogle Scholar
  124. Zhang T, Qian N, Zhu X et al (2013) Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS One 8(2). Article ID e57220PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang SW, Zhu XF, Feng LC, Gao X, Yang B, Zhang TZ, Zhou BL (2016) Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines. Sci Rep 6:31954PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhao Y, Wang H, Chen W, Li Y (2014) Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One 9(1):e86308PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Khezir Hayat
    • 1
  • Adem Bardak
    • 2
  • Dony Parlak
    • 3
  • Farzana Ashraf
    • 1
  • Hafiz Muhammad Imran
    • 1
  • Hafiz Abdul Haq
    • 1
  • Muhammad Azam Mian
    • 1
  • Zahid Mehmood
    • 1
  • Muhammad Naeem Akhtar
    • 4
    • 5
  1. 1.Central Cotton Research InstituteMultanPakistan
  2. 2.Department of Agricultural BiotechnologyKahramanmaras Sutcu Imam University KahramanmarasKahramanmarasTurkey
  3. 3.Kahramanmaras Sutcu Imam University KahramanmarasKahramanmarasTurkey
  4. 4.Department of Soil and Environmental Sciences, MNS University of AgricultureMultanPakistan
  5. 5.Pesticide LaboratoryMultanPakistan

Personalised recommendations