Advertisement

Salinity Tolerance in Cotton

  • Niaz AhmedEmail author
  • Usman Khalid Chaudhry
  • Muhammad Arif Ali
  • Fiaz Ahmad
  • Muhammad Sarfraz
  • Sajjad Hussain
Chapter
  • 41 Downloads

Abstract

Cotton is the chief crop and main pillar of textile industry. Its fiber and seed have significant economic importance. However, salinity interferes with the normal growth functioning and results in halted growth and declined yield of fiber and seed. Salinity effects are more obvious at early growth stages of cotton, limiting final yield. Salt decreases boll formation per plant which ultimately gives decreased fiber yield and poor lint quality. Salinity is a global issue increasing every year due to uncontrolled measures and improper land management. Application of saline irrigation water is adding increments to already existing salts and deteriorating the productive soil. Arid regions are totally dependent upon rain for growth of cotton. Salt problem is more in arid regions due least availability of moisture and water for flushing salts from cotton root zone. Moreover, higher temperature favors excessive evaporation under arid conditions and leaving salt on the upper surface of soil. Salts at the surface soil impede cotton seed germination. In this chapter, we discussed formation of saline soils and their sources which deter cotton growth. Physiological changes, oxidative stress caused due to salinity, role of molecular transporters involved in detoxification and specific gene expression is also illuminated.

Keywords

Cotton Salinity Growth of cotton Agronomic approaches Physiology Molecular techniques 

Abbreviations

ABA

Abscisic acid

AMF

Arbuscular mycorrhizal fungi

APX

Ascorbate peroxidase

CAT

Catalase

H2O2

Hydrogen peroxide

IPT

Isopentenyl transferase

1O2

Singlet oxygen

O2•−

Superoxide anions

OH

Hydroxyl radicals

POD

Peroxidases

ROS

Reactive oxygen species

SOD

Superoxide dismutase

References

  1. Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84Google Scholar
  2. Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56(3):231–249PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613Google Scholar
  4. Ahmad S, Khan N, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1(6):715–719CrossRefGoogle Scholar
  5. Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415Google Scholar
  6. Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib urRehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16Google Scholar
  7. Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610CrossRefGoogle Scholar
  8. Albaladejo I, Egea I, Morales B, Flores FB, Capel C, Lozano R, Bolarin MC (2018) Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis. BMC Plant Biol 18(1):213PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ali A, Ahmad N, Makhdum MI, Gill KH (1986) Effect of soil salinity on cotton (Gossypium hirsutum) on early stage of growth. Pak J Sci 1:37–40Google Scholar
  10. Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6Google Scholar
  11. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669Google Scholar
  12. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192Google Scholar
  13. Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160Google Scholar
  14. Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cer Agron Moldova XLVII(4):71–81Google Scholar
  15. Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib urRehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823Google Scholar
  16. Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222CrossRefGoogle Scholar
  17. Anjum R, Ahmed A, Ullah R, Jahangir M, Yousaf M (2005) Effect of soil salinity/sodicity on the growth and yield of different varieties of cotton. Int J Agric Biol 7(4):606–608Google Scholar
  18. Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop Res 66:115–127CrossRefGoogle Scholar
  19. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744–752PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ashraf M (2010) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21(1):1–30CrossRefGoogle Scholar
  22. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216CrossRefGoogle Scholar
  23. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16CrossRefGoogle Scholar
  24. Ashraf MY, Sarwar G, Ashraf M, Afaf R, Sattar A (2002) Salinity induced changes in α-amylase activity during germination and early cotton seedling growth. Biol Plantarum 45(4):589–591CrossRefGoogle Scholar
  25. Ashraf M, Shahzad SM, Imtiaz M, Rizwan MS, Iqbal MM (2017) Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress. Soil Environ 36(1):51–58CrossRefGoogle Scholar
  26. Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, Cheng H, Yang Q, Song G (2018a) Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J 16(3):699–713PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ashraf MA, Iqbal M, Rasheed R, Hussain I, Perveen S, Mahmood S (2018b) Dynamic proline metabolism: importance and regulation in water-limited environments. In: Plant metabolites and regulation under environmental stress. Academic, Cambridge, MA, pp 323–336CrossRefGoogle Scholar
  28. Azarabadi S, Abdollahi H, Torabi M, Salehi Z, Nasiri J (2017) ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L.). Eur J Plant Pathol 147(2):279–294CrossRefGoogle Scholar
  29. Bakhsh A, Rao AQ, Shahid AA, Husnain T (2012) Spatio temporal expression pattern of an insecticidal gene (cry2A) in transgenic cotton lines. Not Sci Biol 4:115–119.CrossRefGoogle Scholar
  30. Bauder TA, Waskom RM, Sutherland PL, Davis JG, Follett RH, Soltanpour PN (2011) Irrigation water quality criteria. Service in Action; No. 0.506Google Scholar
  31. Bednarz CW, Shurley WD, Anthony WS (2002) Losses in yield, quality, and profitability of cotton from improper harvest timing. Agron J 94(5):1004–1011CrossRefGoogle Scholar
  32. Benz LC, Sandoval FM, Willis WO (1967) Soil salinity changes with fallow and a straw mulch on fallow. Soil Sci 104:63–68CrossRefGoogle Scholar
  33. Bezborodov GA, Shadmanov DK, Mirhashimov RT, Yuldashev T, Qureshi AS, Noble AD, Qadir M (2010) Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric Ecosyst Environ 138(1–2):95–102CrossRefGoogle Scholar
  34. Blum A (2018) Plant breeding for stress environments. CRC Press, Taylor & Francis Group, Boca Raton, FL, p 231CrossRefGoogle Scholar
  35. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  37. Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132(4):2166–2173PubMedPubMedCentralCrossRefGoogle Scholar
  38. Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress-influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347PubMedCrossRefPubMedCentralGoogle Scholar
  39. Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95(2):628–635PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25CrossRefGoogle Scholar
  41. Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Sci 269:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cao D, Lutz A, Hill CB, Callahan DL, Roessner U (2017) A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Front Plant Sci 7:2070PubMedPubMedCentralCrossRefGoogle Scholar
  43. Carreira PM, Marques JM, Nunes D (2014) Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): natural vs. human interference. A review and reinterpretation. Appl Geochem 41:163–175CrossRefGoogle Scholar
  44. Carter DL, Fanning CD (1964) Combining surface mulches and periodic water applications for reclaiming saline soils. Soil Sci Soc Am J 28:564–567CrossRefGoogle Scholar
  45. Castellanos MT, Cabello MJ, Cartagena MC, Tarquis AM, Arce A, Ribas F (2012) Nitrogen uptake dynamics, yield and quality as influenced by nitrogen fertilization in ‘Piel de sapo’ melon. Span J Agric Res 10(3):756–767CrossRefGoogle Scholar
  46. Chabra R (1996) Soil salinity and water quality. CRC Press, Taylor & Francis Group, Balkema Publishers, Brookfield, VTGoogle Scholar
  47. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264CrossRefGoogle Scholar
  48. Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 326(1–2):61–73CrossRefGoogle Scholar
  49. Chen W, Jin M, Ferré TPA, Liu Y, Xian Y, Shan T, Ping X (2018a) Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crop Res 215:207–221CrossRefGoogle Scholar
  50. Chen W, Wang Z, Jin M, Ferré TPA, Wang J, Huang J, Wang X (2018b) Effect of sodium chloride and manganese in irrigation water on cotton growth. Agron J 110:900–909CrossRefGoogle Scholar
  51. Cheng C, Zhang Y, Chen X, Song J, Guo Z, Li K, Zhang K (2018) Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed 38(2):19CrossRefGoogle Scholar
  52. Cramer GR, Lynch J, Läuchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiol 83(3):510–516PubMedPubMedCentralCrossRefGoogle Scholar
  53. da Costa MML, Gomes Nobre R, Soares de Lima G, Raj Gheyi H, Wesley Alves Pinheiro F, Sudário Dias A, Almeida dos AnjosSoares L (2016) Saline-sodic soil and organic matter addition in the cultivation of the colored cotton ‘BRS Topázio’. Semina: Ciências Agrárias 37(2):701–704Google Scholar
  54. Da Silva MJ, De Souza JG, Neto MB, Da Silva JV (1992) Selection on 3 cotton cultivars for tolerance to germination under saline conditions. Pesquisa Agropec Brasileira 27:655–659Google Scholar
  55. Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347(2):201–207PubMedCrossRefPubMedCentralGoogle Scholar
  56. Day JW Jr, Yanez-Arancibia A, Kemp WM, Crump BC (2013) Introduction to estuarine ecology. In: Day JW, Crump BC, Kemp WM, Yáñez-Arancibia A (eds) Estuarine ecology, 2nd edn. Wiley-Blackwell, Hoboken NJ, p 550Google Scholar
  57. Diacono M, Montemurro F (2015) Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture 5(2):221–230CrossRefGoogle Scholar
  58. Dodd K (2007) Characterising the soil and plant interactions that affect the growth and nutrition of cotton in sodic Vertosols. PhD Thesis, The University of New England, Armidale, NSW, AustraliaGoogle Scholar
  59. Dodd K, Guppy CN, Lockwood PV, Rochester IJ (2013) The effect of sodicity on cotton: does soil chemistry or soil physical condition have the greater role? Crop Pasture Sci 64(8):806–815CrossRefGoogle Scholar
  60. Dong H (2012a) Technology and field management for controlling soil salinity effects on cotton. Aus J Crop Sci 6(2):333Google Scholar
  61. Dong HZ (2012b) Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. China J Appl Ecol 23(2):566–572Google Scholar
  62. Dong H, Li W, Tang W, Li Z, Zhang D (2007) Enhanced plant growth, development and fiber yield of Bt transgenic cotton by an integration of plastic mulching and seedling transplanting. Ind Crop Prod 26:298–306CrossRefGoogle Scholar
  63. Dong H, Li W, Tang W, Zhang D (2008) Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agron J 100:1640–1646CrossRefGoogle Scholar
  64. Dong H, Li W, Tang W, Zhang D (2009) Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crop Res 111:269–275CrossRefGoogle Scholar
  65. Dong H, Li W, Xin C, Tang W, Zhang D (2010a) Late planting of short-season cotton in saline fields of the Yellow River Delta. Crop Sci 50:292–300CrossRefGoogle Scholar
  66. Dong H, Kong X, Luo Z, Li W, Xin C (2010b) Unequal salt distribution in the root zone increases growth and yield of cotton. Eur J Agron 33:285–292CrossRefGoogle Scholar
  67. Dong H, Kong X, Li W, Tang W, Zhang D (2010c) Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crop Res 119(1):106–113CrossRefGoogle Scholar
  68. Egea I, Pineda B, Ortíz-Atienza A, Plasencia FA, Drevensek S, García-Sogo B, Yuste-Lisbona FJ, Barrero-Gil J, Atarés A, Flores FB, Barneche F, Angosto T, Capel C, Salinas J, Vriezen W, Esch E, Bowler C, Bolarín MC, Moreno V, Lozano R (2018) The SlCBL10 calcineurin B-like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis. Plant Physiol 176(2):1676–1693PubMedCrossRefPubMedCentralGoogle Scholar
  69. Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525PubMedCrossRefPubMedCentralGoogle Scholar
  70. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943PubMedCrossRefPubMedCentralGoogle Scholar
  71. FAO (2005) Global network on integrated soil management for sustainable use of salt effected soils. http://www.fao.org/ag/AGL/agll/spush/intro.htm
  72. Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481CrossRefGoogle Scholar
  73. Feinerman E (1983) Crop density and irrigation with saline water. West J Agric Econ 8:134–140Google Scholar
  74. Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30(10):1284–1298PubMedCrossRefPubMedCentralGoogle Scholar
  75. Flowers TJ (1999) Salinisation and horticultural production. Sci Hortic 78:1–4Google Scholar
  76. Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331PubMedPubMedCentralCrossRefGoogle Scholar
  77. Flowers TJ, Munns R, Colmer TD (2014) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115(3):419–431PubMedPubMedCentralCrossRefGoogle Scholar
  78. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gandahi AW, Kubar A, Sarki MS, Talpur N, Gandahi M (2017) Response of conjunctive use of fresh and saline water on growth and biomass of cotton genotypes. J Basic Appl Sci 13:326–334CrossRefGoogle Scholar
  80. Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311PubMedCrossRefPubMedCentralGoogle Scholar
  81. Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Singh PK, Ma XN, Long L, Botella JR, Song CP (2018) Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biol 18(1):15PubMedPubMedCentralCrossRefGoogle Scholar
  82. Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33(4):502–511PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ghafoor A, Qadir M, Murtaza G (2004) Salt-affected soils: principles of management, vol xxv. Allied Book Centre, Lahore, Pakistan. 304pGoogle Scholar
  84. Golan-Goldhirsh A, Hankamer B, Lips SH (1990) Hydroxyproline and proline content of cell walls of sunflower, peanut and cotton grown under salt stress. Plant Sci 69(1):27–32CrossRefGoogle Scholar
  85. Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542PubMedCrossRefPubMedCentralGoogle Scholar
  86. Gouia H, Ghorbal MH, Touraine B (1994) Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol 105(4):1409–1418PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hagin J, Sneh M, Lowengart-Aycicegi A (2002) Fertigation – fertilization through irrigation. IPI Research Topics No. 23. Ed. by Johnston AE. International Potash Institute, Basel, SwitzerlandGoogle Scholar
  88. Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331(1–2):313–327CrossRefGoogle Scholar
  89. Hanif M, Noor E, Murtaza N, Qayyum A, Malik W (2008) Assessment of variability for salt tolerance at seedling stage in Gossypium hirsutum L. J Food Agric Environ 6:134–138Google Scholar
  90. Haque SA (2006) Salinity problems and crop production in coastal regions of Bangladesh. Pak J Bot 38(5):1359–1365Google Scholar
  91. Harshavardhan VT, Govind G, Kalladan R, Sreenivasulu N, Hong CY (2018) Cross-protection by oxidative stress: improving tolerance to abiotic stresses including salinity. In: Kumar V, Wani SH, Suprasanna P, Tran LP (eds) Salinity responses and tolerance in plants, vol 1. Springer, Berlin, pp 283–305CrossRefGoogle Scholar
  92. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular response to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466PubMedPubMedCentralCrossRefGoogle Scholar
  94. He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46(11):1848–1854PubMedCrossRefPubMedCentralGoogle Scholar
  95. He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B: Biointerfaces 59(2):128–133PubMedCrossRefPubMedCentralGoogle Scholar
  96. Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci 165(4):693–699CrossRefGoogle Scholar
  97. Higbie SM, Wang F, Stewart JM, Sterling TM, Lindemann WC, Hughs E, Zhang J (2010) Physiological response to salt (NaCl) stress in selected cultivated Tetraploid cottons. Int J Agron 2010:1–12CrossRefGoogle Scholar
  98. Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6(4):54CrossRefGoogle Scholar
  99. Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462PubMedPubMedCentralCrossRefGoogle Scholar
  100. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  101. Horie ST, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938PubMedCrossRefPubMedCentralGoogle Scholar
  102. Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548PubMedPubMedCentralGoogle Scholar
  103. Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549CrossRefGoogle Scholar
  104. Hussain S, Khalid MF, Saqib M, Ahmad S, Zafar W, Rao MJ, Morillon R, Anjum MA (2018) Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiol Plant 40(8):135CrossRefGoogle Scholar
  105. Ibrahim W, Ahmed IM, Chen X, Wu F (2017) Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance, and leaf/root ultrastructure. Environ Sci Pollut Res 24(10):9417–9427CrossRefGoogle Scholar
  106. Ilyas M, Qureshi RH, Qadir MA (1997) Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol 10(3):247–260CrossRefGoogle Scholar
  107. Ishikawa T, Shabala S (2019) Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. Physiol Plant 165(3):619–631PubMedCrossRefPubMedCentralGoogle Scholar
  108. Jabeen R, Ahmad R (2009) Alleviation of the adverse effects of salt stress by foliar application of sodium antagonistic essential minerals of cotton (Gossypium hirsutum L.). Pak J Bot 41(5):2199–2208Google Scholar
  109. Jafri AZ, Rafiq A (1994) Plant growth and ionic distribution in cotton (Gossypium hirsutum L.) under saline environment. Pak J Bot 26:105Google Scholar
  110. Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthusroseus. Turk J Biol 32(2):79–83Google Scholar
  111. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  112. Jubany-Marí T, Munné-Bosch S, López-Carbonell M, Alegre L (2009) Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. J Exp Bot 60:107–120PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kahlown MA, Azam M (2002) Individual and combined effect of waterlogging and salinity on crop yields in the Indus basin. Irrig Drain 51(4):329–338CrossRefGoogle Scholar
  114. Kang Y, Wang R, Wan S, Hu W, Jiang S, Liu S (2012) Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China. Agric Water Manage 109:117–126CrossRefGoogle Scholar
  115. Karlberg L, de Vries FWTP (2004) Exploring potentials and constraints of low-cost drip irrigation with saline water in sub-Saharan Africa. Phys Chem Earth 29:1035–1042CrossRefGoogle Scholar
  116. Kawakami EM, Oosterhuis DM, Snider JL (2010) Effect of salinity on cotton nitrogen uptake and assimilation of urea applied with N-(n-Butyl) thiophosphorctriamide and dicyandiaminde. Summaries Arkansas Cotton Research. AAES Res Ser 589:40–45Google Scholar
  117. Khan TM, Saeed M, Mukhtar MS, Khan AM (2001) Assesment of variation for salinity tolerance in some hybrids of cotton (Gossypium hirsutum L.). Int J Agric Biol 3:167–170Google Scholar
  118. Khare T, Kumar V, Kishor PB (2015) Na+ and Cl ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252(4):1149–1165PubMedCrossRefPubMedCentralGoogle Scholar
  119. Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50(338):1495–1505CrossRefGoogle Scholar
  120. Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60(3):344–351CrossRefGoogle Scholar
  121. Kong X, Luo Z, Dong H, Eneji AE, Li W (2011) Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J Exp Bot 63(5):2105–2116PubMedPubMedCentralCrossRefGoogle Scholar
  122. Kothari N, Campbell BT, Dever JK, Hinze LL (2016) Combining ability and performance of cotton germplasm with diverse seed oil content. Crop Sci 56(1):19–29CrossRefGoogle Scholar
  123. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294PubMedCrossRefPubMedCentralGoogle Scholar
  124. Ledbetter CA (1987) Heritability of salt tolerance during germination and emergence in short staple cotton. Diss Abstr Int Sci Eng 47(11):113Google Scholar
  125. Leidi EO, Saiz JF (1997) Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings? Plant Soil 190(1):67–75CrossRefGoogle Scholar
  126. Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291PubMedCrossRefPubMedCentralGoogle Scholar
  127. Liu MX, Yang JS, Li XM, YU M, Wang J (2012a) Effects of irrigation water quality and drip tape arrangement on soil salinity, soil moisture distribution, and cotton yield (Gossypium hirsutum L.) under mulched drip irrigation in Xinjiang, China. J Integr Agric 11(3):502–511CrossRefGoogle Scholar
  128. Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012b) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plantarum 56(2):237–246CrossRefGoogle Scholar
  129. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X, Zhang J (2014a) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895PubMedPubMedCentralCrossRefGoogle Scholar
  130. Liu S, Dong Y, Xu L, Kong J (2014b) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and anti-oxidative metabolism of cotton seedlings. Plant Growth Regul 73(1):67–78CrossRefGoogle Scholar
  131. Liu JF, Zhang SL, Tang HL, Wu LZ, Dong LJ, Liu LD, Che WL (2015) Overexpression of an Aeluropuslittoralis Parl. potassium transporter gene, AlHAK1, in cotton enhances potassium uptake and salt tolerance. Euphytica 203(1):197–209CrossRefGoogle Scholar
  132. Lobell DB, Ortiz-Monasterio JI, Gurrola FC, Valenzuela L (2007) Identification of saline soils with multiyear remote sensing of crop yields. Soil Sci Soc Am J 71(3):777–783CrossRefGoogle Scholar
  133. Lu H, Lashari MS, Liu X, Ji H, Li L, Zheng J, Kibue GW, Joseph S, Pan G (2015) Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. Eur J Soil Biol 70:67–76CrossRefGoogle Scholar
  134. Lu Z, Lu J, Pan Y, Lu P, Li X, Cong R, Ren T (2016) Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant Cell Environ 39(11):2428–2439PubMedCrossRefPubMedCentralGoogle Scholar
  135. Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–26Google Scholar
  136. Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irr Drain Div 103:115–134Google Scholar
  137. Martinez-Beltran J, LiconaManzur C (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: International salinity forum managing saline soils and water: science, technology and social issues, Riverside Convention Center, Riverside, California, USA, 25–28 April 2005, pp 311–314Google Scholar
  138. Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr 24(3):599–612CrossRefGoogle Scholar
  139. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76CrossRefGoogle Scholar
  140. Metternicht GI, Zink JA (2003) Remote sensing of soil salinity: potential and constraints. Remote Sens Environ 85:1–20CrossRefGoogle Scholar
  141. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467PubMedCrossRefPubMedCentralGoogle Scholar
  142. Min W, Guo H, Zhou G, Zhang W, Ma L, Ye J, Hou Z, Wu L (2016) Soil salinity, leaching, and cotton growth as affected by saline water drip irrigation and N fertigation. Acta Agric Scand B Soil Plant Sci 66(6):489–501Google Scholar
  143. Min W, Guo H, Hu Z, Zhang H, Ye J, Hou Z (2017) Cotton growth and the fate of N fertilizer as affected by saline water irrigation and N fertigation in a drip-irrigated field. Acta Agric Scand B Soil Plant Sci 67(8):712–722Google Scholar
  144. Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19PubMedCrossRefPubMedCentralGoogle Scholar
  145. Moseley WG (2001) Sahelian ‘white gold’ and rural poverty-environment interactions: the political ecology of cotton production, environmental change, and household food economy in Mali. Doctoral dissertation, University of GeorgiaGoogle Scholar
  146. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250PubMedCrossRefPubMedCentralGoogle Scholar
  147. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663CrossRefGoogle Scholar
  148. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefPubMedCentralGoogle Scholar
  149. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043PubMedCrossRefPubMedCentralGoogle Scholar
  150. Murtaza G, Ghafoor A, Qadir M (2006) Irrigation and soil management strategies for using saline-sodic water in a cotton–wheat rotation. Agric Water Manage 81(1–2):98–114CrossRefGoogle Scholar
  151. Murtaza G, Murtaza B, Usman HM, Ghafoor A (2013) Amelioration of saline-sodic soil using gypsum and low quality water in following sorghum-berseem crop rotation. Int J Agric Biol 15(4):640–648Google Scholar
  152. Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note. United Nations Environment Programme - I11. Global Assessment of Soil Degradation GLASOD, October 1990. International Soil Reference and Information Centre, NairobiGoogle Scholar
  153. Ondrasek O, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. InTech, Croatia.  https://doi.org/10.5772/22248 CrossRefGoogle Scholar
  154. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Paytn P (2011) Expression of an Arabidopsis vacuolar H+ pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9(1):88–99PubMedCrossRefPubMedCentralGoogle Scholar
  155. Pasternak D, De Malach Y (1994) Crop irrigation with saline water. Handbook of plant and crop stress. Marcel Dekker, New York, pp 599–622Google Scholar
  156. Peng Z, He S, Sun J, Pan Z, Gong WF, Lu Y, Du X (2016) Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci Rep 6:34548PubMedPubMedCentralCrossRefGoogle Scholar
  157. Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521CrossRefGoogle Scholar
  158. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99(12):8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253–254:94–113CrossRefGoogle Scholar
  160. Rathert G (1982) Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. VI. Mineral distribution variability among different salt-tolerant cotton varieties. J Plant Nutr 5:183–193CrossRefGoogle Scholar
  161. Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AL, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27(6):753–763PubMedCrossRefPubMedCentralGoogle Scholar
  162. Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411(1–2):319–332CrossRefGoogle Scholar
  163. Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Funct Plant Biol 27(7):709–715CrossRefGoogle Scholar
  164. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023PubMedCrossRefPubMedCentralGoogle Scholar
  165. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37(7):613–620CrossRefGoogle Scholar
  166. Rochester IJ (2010) Phosphorus and potassium nutrition of cotton: interaction with sodium. Crop Pasture Sci 61:825–834CrossRefGoogle Scholar
  167. Rozema J, Flowers T (2008) Crops for a salinized world. Science 322(5907):1478–1480PubMedCrossRefPubMedCentralGoogle Scholar
  168. Sahin U, Anapali O, Hanay A (2002) The effect of consecutive applications of leaching water applied in equal, increasing or decreasing quantities on soil hydraulic conductivity of a saline–sodic soil in the laboratory. Soil Use Manage 18:152–154CrossRefGoogle Scholar
  169. Sandoval FM, Benz LC (1966) Effect of bare fallow, barley and grass on salinity of a soil over a saline water table. Soil Sci Soc Am J 30:392–397CrossRefGoogle Scholar
  170. Sarangi SK, Maji B, Mandal UK, Mahanta KK, Mandal S, Sharma PC (2017) Raised bed sowing – a climate change adaptive maize cultivation practice for coastal saline region. Paper presented orally at 5th National Seminar of Indian Society of Soil Salinity and Water Quality (ISSSWQ), Swami Keshwanand Rajasthan Agricultural University, Bikaner, 21–23 January 2017, pp 71–72Google Scholar
  171. Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):77–80Google Scholar
  172. Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high affinity potassium uptake transporter from higher plants. Nature 370:655–658PubMedCrossRefPubMedCentralGoogle Scholar
  173. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249CrossRefGoogle Scholar
  174. Shahzad S, Khan MY, Zahir ZA, Asghar HN, Chaudhry UK (2017) Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pak J Bot 49(4):1523–1530Google Scholar
  175. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037Google Scholar
  176. Shen G, Wei J, Qiu X, Hu R, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33(2):167–177CrossRefGoogle Scholar
  177. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131PubMedCrossRefPubMedCentralGoogle Scholar
  178. Soares LA, Fernandes PD, de Lima GS, Suassuna JF, Brito MEB, da Sá FV (2018) Growth and fiber quality of colored cotton under salinity management strategies. Rev Bras Eng Agríc Ambient 22(5):332–337CrossRefGoogle Scholar
  179. Song J, Zhang R, Yue D, Chen X, Guo Z, Cheng C, Hu M, Zhang J, Zhang K (2018) Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields. Plant Sci 274:369–382PubMedCrossRefPubMedCentralGoogle Scholar
  180. Sumner ME (ed) (1999) Handbook of soil science. CRC Press, Boca Raton, FLGoogle Scholar
  181. Sun X, Liu Y (2001) Test on criteria of evaluating salt tolerance of cotton cultivars. Zuo Wu Xue Bao 27(6):794–801Google Scholar
  182. Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938PubMedPubMedCentralCrossRefGoogle Scholar
  183. Suzuki K (1999) Effect of continuous compost application on water-stable soil macroaggregation in a field subjected to double cropping. Soil Sci Plant Nutr 45:1003–1007CrossRefGoogle Scholar
  184. Szabolcs I (1989) Salt-affected soils. CRC Press, Boca Raton, FLGoogle Scholar
  185. Tang W, Luo Z, Wen SM, Dong HZ, Xin CS, Li WJ (2007) Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress. Cotton Sci 19:28–32Google Scholar
  186. Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262Google Scholar
  187. Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43CrossRefGoogle Scholar
  188. Thomas DSG (ed) (2011) Arid zone geomorphology: process, form and change in drylands. Wiley, Hoboken, NJ, p 648Google Scholar
  189. Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391Google Scholar
  190. Van Breemen N, Buurman P (2002) Soil formation. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  191. Villa-Castorena M, Ulery AL, Catalán-Valencia EA, Remmenga MD (2003) Salinity and nitrogen rate effects on the growth and yield of Chile pepper plants. Soil Sci Soc Am J 67(6):1781–1789CrossRefGoogle Scholar
  192. Wang R, Kang Y, Wan S, Hu W, Liu S, Jiang S, Liu S (2012) Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area. Agric Water Manage 110:109–117CrossRefGoogle Scholar
  193. Wang R, Kang Y, Wan S (2015) Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China. Agric Water Manage 153:1–8CrossRefGoogle Scholar
  194. Wang N, Qi H, Qiao W, Shi J, Xu Q, Zhou H, Yan G, Huang Q (2017) Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance. Acta Physiol Plant 39(3):77CrossRefGoogle Scholar
  195. Warrence NJ, Bauder JW, Pearson KE (2002) Basics of salinity and sodicity effects on soil physical properties. Bozeman, MT, Department of Land Resources and Environmental Sciences, Montana State University, pp 1–29Google Scholar
  196. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236PubMedCrossRefPubMedCentralGoogle Scholar
  197. Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, Zhou Z, Wang Y, Zhang Z, Lin Z, Liu F, Wang K (2017) Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One 12(5):e0178313PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25(2):195–210PubMedCrossRefPubMedCentralGoogle Scholar
  199. Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607PubMedCrossRefPubMedCentralGoogle Scholar
  200. Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32(2):297–304CrossRefGoogle Scholar
  201. Wu H, Zhang X, Giraldo JP, Shabala S (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431(1–2):1–17CrossRefGoogle Scholar
  202. Xie Z, Duan L, Tian X, Wang B, Eneji AE, Li Z (2008) Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. J Plant Physiol 165(4):375–384PubMedCrossRefPubMedCentralGoogle Scholar
  203. Xie T, Liu X, Sun T (2011) The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecol Model 222(2):241–252CrossRefGoogle Scholar
  204. Xu WL, Zhang DJ, Wu YF, Qin LX, Huang GQ, Li J, Li L, Li XB (2013) Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol 82(4–5):353–365PubMedCrossRefPubMedCentralGoogle Scholar
  205. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092PubMedPubMedCentralCrossRefGoogle Scholar
  206. Younis A, Riaz A, Ahmed I, Siddique MI, Tariq U, Hameed M, Nadeem M (2014) Anatomical changes induced by NaCl stress in root and stem of Gazania harlequin L. Agric Commun 2:8–14Google Scholar
  207. Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2016) Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14(1):72–84CrossRefGoogle Scholar
  208. Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G (2018) Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnol J 16(1):310–321PubMedCrossRefPubMedCentralGoogle Scholar
  209. Zhang HJ, Dong H, Shi YJ, Chen SY, Zhu YH (2007) Transformation of cotton (Gossypium hirsutum) with AhCMO gene and the expression of salinity tolerance. Acta Agron Sin 33:1073–1078Google Scholar
  210. Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23(2):289–298CrossRefGoogle Scholar
  211. Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011a) Creating drought-and salt tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6(6):861–863PubMedPubMedCentralCrossRefGoogle Scholar
  212. Zhang X, Zhen J, Li Z, Kang D, Yang Y, Kong J, Hua J (2011b) Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29(3):626–637CrossRefGoogle Scholar
  213. Zhang D, Li W, Xin C, Tang W, Eneji AE, Dong H (2012a) Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crop Res 138:63–70CrossRefGoogle Scholar
  214. Zhang HJ, Dong HZ, Li WJ, Zhang DM (2012b) Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. J Agron Crop Sci 198(1):27–37CrossRefGoogle Scholar
  215. Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9(11):e112807PubMedPubMedCentralCrossRefGoogle Scholar
  216. Zhang T, Wang T, Liu KS, Wang L, Wang K, Zhou Y (2015) Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agric Water Manage 159:115–122CrossRefGoogle Scholar
  217. Zhang K, Song J, Chen X, Yin T, Liu C, Li K, Zhang J (2016) Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica 211(2):231–244CrossRefGoogle Scholar
  218. Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217(3):1161–1176PubMedCrossRefPubMedCentralGoogle Scholar
  219. Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and water logging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582PubMedCrossRefPubMedCentralGoogle Scholar
  220. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948PubMedPubMedCentralCrossRefGoogle Scholar
  221. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324PubMedPubMedCentralCrossRefGoogle Scholar
  222. Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8(11):e80218PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Niaz Ahmed
    • 1
    Email author
  • Usman Khalid Chaudhry
    • 2
  • Muhammad Arif Ali
    • 1
  • Fiaz Ahmad
    • 3
  • Muhammad Sarfraz
    • 4
  • Sajjad Hussain
    • 5
  1. 1.Department of Soil ScienceBahauddin Zakariya UniversityMultanPakistan
  2. 2.Department of Agricultural Genetic Engineering, Ayhan Sahenk Faculty of Agricultural Sciences and TechnologiesNiğde Ömer Halisdemir UniversityNiğdeTurkey
  3. 3.Central Cotton Research InstituteMultanPakistan
  4. 4.Soil Salinity Research InstitutePindi BhattianPakistan
  5. 5.Department of HorticultureBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations