Advertisement

Measurement of Nonlinear Guided Waves

  • Cliff J. LissendenEmail author
  • Mostafa Hasanian
Chapter
Part of the Springer Series in Measurement Science and Technology book series (SSMST)

Abstract

Characteristics of nonlinear guided waves provide information about the current state of the material that comprises the waveguide. Notably, the information is related to the material's microstructure, which in turn influences the strength properties. However, the dispersive nature of guided waves makes their nonlinear characteristics more complicated than those of bulk waves. This chapter strives to describe nonlinear features of guided wave propagation including higher harmonic generation and wave mixing. It provides a methodology for selecting wave modes and frequencies that provide the best opportunities for measurements as well as measurement techniques and a glimpse of some recent results.

Nomenclature

I

second rank identity tensor

tr(.)

trace of the tensor

Re(.)

real part of the complex argument

u

displacement vector

U(Z)

displacement profile through thickness of plate (i.e., wavestructure)

H

displacement gradient tensor

E

Lagrange strain tensor

T

Cauchy stress tensor

P

First Piola-Kirchhoff stress tensor

S

Second Piola-Kirchhoff stress tensor

n

Outward normal unit vector

ρ

mass density

λL, μ

Lame’s constants

A, B, C

Landau-Lifshitz 3rd order elastic constants

\(\beta^{\prime} = A_{2} /A_{1}^{2}\)

relative nonlinearity parameter, where A1 and A2 are the amplitudes of the primary and secondary wave fields respectively

W

strain energy function

h

half-thickness of plate

d

plate thickness

λ

wavelength

k

wavenumber

K

wavevector

p

position vector

Mab_r

mixing power associated with the interaction of waves a and b, which generates the internally resonant mode r

θ

wave interaction angle between the primary waves

γ

direction of secondary wave vector with respect to wave a

ω

circular frequency

f

frequency in Hz

cL, cT

longitudinal wave speed, transverse wave speed

cp, cg

phase velocity (speed of an individual wave), group velocity (speed of a group of waves having similar frequencies, i.e., rate at which the envelope travels)

Vpp

peak-to-peak voltage

Notes

Acknowledgements

The first author acknowledges that our research in nonlinear guided waves was partially supported by projects funded by the Nuclear Energy Universities Program in the U.S. Department of Energy (awards 102,946 and 120,237) and the U.S. National Science Foundation (awards 1,300,562 and 1,727,292). In addition, he wants to acknowledge graduate and postdoc students Yang Liu, Vamshi Chillara, Gloria Choi, Hwanjeong Cho, Baiyang Ren, and Chung Seok Kim for their weighty contributions, as well as encouragement from his colleague Joseph Rose.

References

  1. 1.
    W.J.N. De Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265(4), 819–839 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    M. Hasanian, C.J. Lissenden, Second order ultrasonic guided wave mutual interactions in plate: arbitrary angles, internal resonance, and finite interaction region. J. Appl. Phys. 124(16) (2018)ADSCrossRefGoogle Scholar
  3. 3.
    T. Kundu, Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation (2018)Google Scholar
  4. 4.
    J. L. Rose, Ultrasonic Guided Waves in Solid Media. (Cambridge University Press, Cambridge, 2014)Google Scholar
  5. 5.
    M. Deng, Second-harmonic properties of horizontally polarized shear modes in an isotropic plate. Jpn. J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 35(7), 4004–4010 (1996)Google Scholar
  6. 6.
    M. Deng, Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 84(7), 3500–3505 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Deng, Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85(6), 3051–3058 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    M. Deng, Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94(6), 4152–4159 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Srivastava, F. Lanza di Scalea, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 323(3–5), 932–943 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M.F. Müller, J.-Y. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127(4), 2141–2152 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N. Matsuda, S. Biwa, Phase and group velocity matching for cumulative harmonic generation in Lamb waves phase and group velocity matching for cumulative harmonic generation in Lamb waves. J. Appl. Phys. 109, 094903 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    V. K. Chillara, C. J. Lissenden, Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111(12) (2012)Google Scholar
  13. 13.
    M. Deng, P. Wang, X. Lv, Experimental verification of cumulative growth effect of second harmonics of Lamb wave propagation in an elastic plate. Appl. Phys. Lett. 86(12), 1–3 (2005)CrossRefGoogle Scholar
  14. 14.
    C. Bermes, J.Y. Kim, J. Qu, L.J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90(2), 1–4 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Pruell, J.Y. Kim, J. Qu, L.J. Jacobs, Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91(23) (2007)ADSCrossRefGoogle Scholar
  16. 16.
    C. Pruell, J.Y. Kim, J. Qu, L.J. Jacobs, Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18, 035033 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T.-H. Lee, I.-H. Choi, K.-Y. Jhang, The nonlinearity of guided wave in an elastic plate. Mod. Phys. Lett. B 22(11), 1135–1140 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    K.H. Matlack, J.Y. Kim, L.J. Jacobs, J. Qu, Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34(1) (2015)Google Scholar
  19. 19.
    V.K. Chillara, C.J. Lissenden, Review of nonlinear ultrasonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55(1) (2016)ADSCrossRefGoogle Scholar
  20. 20.
    W. Bin Li, M.X. Deng, Y.X. Xiang, Review on second-harmonic generation of ultrasonic guided waves in solid media (I): theoretical analyses. Chin. Phys. B 26(11) (2017)ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Auld, Acoustic Fields and Waves in Solids, vol. II (Wiley, 1973)Google Scholar
  22. 22.
    M. Mazilu, A. Demčenko, R. Wilson, J. Reboud, J.M. Cooper, Breaking the symmetry of momentum conservation using evanescent acoustic fields. Phys. Rev. Lett. 121(24), 244301 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Liu, V.K. Chillara, C.J. Lissenden, On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 332(19), 4517–4528 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Liu, V.K. Chillara, C.J. Lissenden, J.L. Rose, Third harmonic shear horizontal and Rayleigh Lamb waves in weakly nonlinear plates. J. Appl. Phys. 114(11) (2013)ADSCrossRefGoogle Scholar
  25. 25.
    K.H. Matlack, J.Y. Kim, L.J. Jacobs, J. Qu, Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 109(1), 1–5 (2011)CrossRefGoogle Scholar
  26. 26.
    V.K. Chillara, C.J. Lissenden, Nonlinear guided waves in plates: a numerical perspective. Ultrasonics 54(6), 1553–1558 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Matsuda, S. Biwa, Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestruct. Eval. 33(2), 169–177 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Zuo, Y. Zhou, Z. Fan, Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency. Appl. Phys. Lett. 109(2) (2016)ADSCrossRefGoogle Scholar
  29. 29.
    V.K. Chillara, C.J. Lissenden, On some aspects of material behavior relating microstructure and ultrasonic higher harmonic generation. Int. J. Eng. Sci. 94, 59–70 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Y. Xiang, W. Zhu, M. Deng, F.Z. Xuan, C.J. Liu, Generation of cumulative second-harmonic ultrasonic guided waves with group velocity mismatching: numerical analysis and experimental validation. Epl 116(3) (2016)ADSCrossRefGoogle Scholar
  31. 31.
    W. Zhu, Y. Xiang, C.J. Liu, M. Deng, F.Z. Xuan, A feasibility study on fatigue damage evaluation using nonlinear Lamb waves with group-velocity mismatching. Ultrasonics 90(June), 18–22 (2018)CrossRefGoogle Scholar
  32. 32.
    V.K. Chillara, C.J. Lissenden, Analysis of second harmonic guided waves in pipes using a large-radius asymptotic approximation for axis-symmetric longitudinal modes. Ultrasonics 53(4), 862–869 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Liu, E. Khajeh, C.J. Lissenden, J.L. Rose, Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders. J. Acoust. Soc. Am. 133(5), 2541–2553 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    W. Li, Y. Cho, Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Exp. Mech. 54(8), 1309–1318 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Liu, C.J. Lissenden, J.L. Rose, Higher order interaction of elastic waves in weakly nonlinear hollow circular cylinders. I. Analytical foundation. J. Appl. Phys. 115(21) (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Liu, E. Khajeh, C.J. Lissenden, J.L. Rose, Higher order interaction of elastic waves in weakly nonlinear hollow circular cylinders. II. Physical interpretation and numerical results. J. Appl. Phys. 115(21) (2014)ADSCrossRefGoogle Scholar
  37. 37.
    W.J.N. de Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 41(1), 1–11 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    A. Srivastava, I. Bartoli, S. Salamone, F. Lanza di Scalea, Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. J. Acoust. Soc. Am. 127(5), 2790–2796 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    C. Nucera, F. Lanza di Scalea, Higher-harmonic generation analysis in complex waveguides via a nonlinear semianalytical finite element algorithm. Math. Probl. Eng. 2012, 1–16 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    M. Hasanian, C.J. Lissenden, Second order harmonic guided wave mutual interactions in plate: vector analysis, numerical simulation, and experimental results. J. Appl. Phys. 122(8) (2017)ADSCrossRefGoogle Scholar
  41. 41.
    W. Li, M. Deng, N. Hu, Y. Xiang, Theoretical analysis and experimental observation of frequency mixing response of ultrasonic Lamb waves. J. Appl. Phys. 124(4) (2018)ADSCrossRefGoogle Scholar
  42. 42.
    G. Tang, M. Liu, L.J. Jacobs, J. Qu, Detecting localized plastic strain by a scanning collinear wave mixing method. J. Nondestruct. Eval. 33(2), 196–204 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Ishii, S. Biwa, T. Adachi, Non-collinear interaction of guided elastic waves in an isotropic plate. J. Sound Vib. 419, 390–404 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Ishii, K. Hiraoka, T. Adachi, Finite-element analysis of non-collinear mixing of two lowest-order antisymmetric Rayleigh-Lamb waves. J. Acoust. Soc. Am. 144(1), 53–68 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    V. Giurgiutiu, Structural Health Monitoring with piezoelectric wafer active sensors. (Elsevier, 2008)Google Scholar
  46. 46.
    S. Thiele, J.Y. Kim, J. Qu, L.J. Jacobs, Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity. Ultrasonics 54(6), 1470–1475 (2014)CrossRefGoogle Scholar
  47. 47.
    A. Moreau, Detection of acoustic second harmonics in solids using a heterodyne laser interferometer. J. Acoust. Soc. Am. 98(5), 2745–2752 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    D.C. Hurley, C.M. Fortunko, Determination of the nonlinear ultrasonic parameter β using a Michelson interferometer. Meas. Sci. Technol. 8(6), 634–642 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    B. Ren, C.J. Lissenden, PVDF multielement lamb wave sensor for structural health monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 178–185 (2016)CrossRefGoogle Scholar
  50. 50.
    B. Ren, H. Cho, C.J. Lissenden, A guided wave sensor enabling simultaneous wavenumber-frequency analysis for both lamb and shear-horizontal waves. Sensors (Switzerland) 17(3) (2017)CrossRefGoogle Scholar
  51. 51.
    H. Cho, M. Hasanian, S. Shan, C.J. Lissenden, Nonlinear guided wave technique for localized damage detection in plates with surface-bonded sensors to receive Lamb waves generated by shear-horizontal wave mixing. NDT E Int. 102, 35–46 (2019)CrossRefGoogle Scholar
  52. 52.
    Y. Zhu, X. Zeng, M. Deng, K. Han, D. Gao, Detection of nonlinear Lamb wave using a PVDF comb transducer. NDT E Int. 93, 110–116 (2018)CrossRefGoogle Scholar
  53. 53.
    M. Hong, Z. Su, Q. Wang, L. Cheng, X. Qing, Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation. Ultrasonics 54(3), 770–778 (2014)CrossRefGoogle Scholar
  54. 54.
    C.J. Lissenden, Y. Liu, G.W. Choi, X. Yao, Effect of localized microstructure evolution on higher harmonic generation of guided waves. J. Nondestruct. Eval. 33(2), 178–186 (2014)CrossRefGoogle Scholar
  55. 55.
    M. Deng, J. Pei, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90(12), 1–4 (2007)CrossRefGoogle Scholar
  56. 56.
    J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120(3), 1266–1273 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    S. Shan, L. Cheng, P. Li, Adhesive nonlinearity in Lamb-wave-based structural health monitoring systems. Smart Mater. Struct. 26(2), 1–17 (2017)CrossRefGoogle Scholar
  58. 58.
    X. Liu et al., Detection of micro-cracks using nonlinear lamb waves based on the Duffing-Holmes system. J. Sound Vib. 405, 175–186 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    X. Liu et al., Locating and imaging contact delamination based on chaotic detection of nonlinear Lamb waves. Mech. Syst. Signal Process. 109, 58–73 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    S. Shan, M. Hasanian, H. Cho, C.J. Lissenden, L. Cheng, New nonlinear ultrasonic method for material characterization: codirectional shear horizontal guided wave mixing in plate. Ultrasonics 96, 64–74 (2019)CrossRefGoogle Scholar
  61. 61.
    A. Hikata, B.B. Chick, C. Elbaum, Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36(1), 229–236 (1965)ADSCrossRefGoogle Scholar
  62. 62.
    J.H. Cantrell, Fundamentals and applications of nonlinear ultrasonic nondestructive evaluation,” in Ultrasonic Nondestructive Evaluation, ed. by T. Kundu (Boca Raton: CRC Press, 2004), pp. 363–434Google Scholar
  63. 63.
    W.D. Cash, W. Cai, Dislocation contribution to acoustic nonlinearity: the effect of orientation-dependent line energy. J. Appl. Phys. 109(1) (2011)ADSCrossRefGoogle Scholar
  64. 64.
    W.D. Cash, W. Cai, Contribution of dislocation dipole structures to the acoustic nonlinearity. J. Appl. Phys. 111(7) (2012)ADSCrossRefGoogle Scholar
  65. 65.
    J. Zhang, F.Z. Xuan, A general model for dislocation contribution to acoustic nonlinearity. Europhys. Lett. 105, 54005 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    X. Gao, J. Qu, Acoustic nonlinearity parameter induced by extended dislocations. J. Appl. Phys. 124, 125102 (2018)ADSCrossRefGoogle Scholar
  67. 67.
    X. Gao, J. Qu, Contribution of dislocation pileups to acoustic nonlinearity parameter. J. Appl. Phys. 125, 215104 (2019)ADSCrossRefGoogle Scholar
  68. 68.
    A.K. Metya, M. Ghosh, N. Parida, K. Balasubramaniam, Effect of tempering temperatures on nonlinear Lamb wave signal of modified 9Cr-1Mo steel. Mater. Charact. 107, 14–22 (2015)CrossRefGoogle Scholar
  69. 69.
    H. Cho, Toward Robust SHM and NDE of plate-like structures using nonlinear guided wave features. The Pennsylvania State University, 2017Google Scholar
  70. 70.
    V. Chillara, H. Cho, M. Hasanian, C. Lissenden, Effect of load and temperature changes on nonlinear ultrasonic measurements: implications for SHM. Struct. Health Monit. 2015, 783–790 (2015)Google Scholar
  71. 71.
    W. Zhu, Y. Xiang, C. Liu, M. Deng, C. Ma, F. Xuan, Fatigue damage evaluation using nonlinear Lamb waves with quasi phase-velocity matching at low frequency. Mater. (Basel) 11(10), 1920 (2018)ADSCrossRefGoogle Scholar
  72. 72.
    G. Choi, Y. Liu, C.J. Lissenden, Nonlinear guided waves for monitoring microstructural changes in metal structures,” in Proceedings of the ASME 2015 Pressure Vessels and Piping Conference, 2015, pp. PVP2015–45292Google Scholar
  73. 73.
    C.J. Lissenden, Y. Liu, J.L. Rose, Use of non-linear ultrasonic guided waves for early damage detection. Insight Non-Destructive Test. Cond. Monit. 57(4), 206–211 (2015)CrossRefGoogle Scholar
  74. 74.
    J.N. Potter, A.J. Croxford, P.D. Wilcox, Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 113(14), 1–5 (2014)CrossRefGoogle Scholar
  75. 75.
    C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, P. Antonaci, Analysis of elastic nonlinearity using the scaling subtraction method. Phys. Rev. B Condens. Matter Mater. Phys. 79(6), 1–13 (2009)Google Scholar
  76. 76.
    A.K. Metya, S. Tarafder, K. Balasubramaniam, Nonlinear Lamb wave mixing for assessing localized deformation during creep. NDT E Int. 98(April), 89–94 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations