Advertisement

Measurement of Nonlinear Ultrasonic Parameters from Higher Harmonics

  • Kyung-Young JhangEmail author
  • Sungho Choi
  • Jongbeom Kim
Chapter
Part of the Springer Series in Measurement Science and Technology book series (SSMST)

Abstract

Higher harmonic generation is a classic phenomenon of nonlinear ultrasonic interaction, which can occur in both material elastic and contact acoustic nonlinearities. However, this chapter covers only material elastic nonlinearity. The nonlinear ultrasonic parameters quantitatively represent the nonlinear elastic properties of a material and can be measured from the higher harmonics generated during ultrasonic wave propagation in the material. In this chapter, we describe the measurement process of nonlinear ultrasonic parameters. Furthermore, we introduce the configuration of the experimental apparatus and the signal processing techniques in detail. In particular, we focused on the error-inducing factors. Methods that use longitudinal waves are mainly considered; however, a method that uses surface waves is also introduced in brief.

Nomenclature

.

\(A\left(\upomega \right)\)

displacement amplitude

\(A_{1}\)

displacement amplitude of the fundamental frequency component

\(A^{\prime}_{1}\)

detected signal amplitude of the fundamental frequency component

\(A_{1,0}^{\prime}\)

detected signal amplitude of the fundamental frequency component for the reference material

\(A_{2}\)

displacement amplitude of the second-order harmonic frequency component

\(A_{2}^{\prime }\)

detected signal amplitude of the second-order frequency component

\(A_{2,0}^{\prime }\)

detected signal amplitude of the second-order frequency component for the reference material

AV(ω)

amplitude of a detected voltage signal

Ci(ω)

response function of couplant layer function at position i

\(C_{IJ}\)

second-order elastic constant

\(C_{IJK}\)

third-order elastic constant

D(ω)

amplitude composition of an electrical signal sent to a transmitting transducer

G(ω)

response function of an amplifier

\(H\left(\upomega \right)\)

calibration function

\(I^{\prime}_{in} \left( \omega \right)\)

input current in the calibration

\(I_{out} \left( \omega \right)\)

current measured at the receiving part in the nonlinear measurement

\(I_{out}^{\prime } \left( \omega \right)\)

output current in the calibration

\(K\left( \omega \right)\)

transfer function

\(M_{IJ}\)

second-order Huang coefficient

\(M_{IJK}\)

third-order Huang coefficient

\(N\)

window length

\(N_{p}\)

number density of precipitates

\(P_{A,in} \left( \omega \right)\)

monochromatic acoustic power at the transmitting transducer

\(P_{A,out} \left( \omega \right)\)

acoustic power at the receiving transducer

\(P_{{{\text{E}},{\text{cal}} - {\text{in}}}} \left(\upomega \right)\)

generated signal in the calibration

\(P_{E,cal - out} \left(\upomega \right)\)

received signal in the calibration

\(P_{E,in} \left( \omega \right)\)

monochromatic electrical power at the transmitting transducer

\(P_{E,out} \left( \omega \right)\)

electrical power at the receiving transducer

R(ω)

response function of a receiving transducer

T(ω)

response function of transmitting transducer

\(V_{in}^{\prime } \left(\upomega \right)\)

input voltage in the calibration

\(V_{\text{out}}^{\prime } \left(\upomega \right)\)

output voltage in the calibration

X

propagation direction

\(Z\left(\upomega \right)\)

electrical impedance

\(a\)

area of the receiving transducer

d

line beam spacing

ffund

fundamental wave frequency determined by selection of line beam spacing

\(k\)

wave number

\(k^{\prime}\)

wave number compensation factor

\(k_{0}\)

wave number for the reference material

n

data number

q

quantum voltage

\(r_{p}\)

average radius of the precipitates

t

time

u

displacement

u1

first-order perturbation solution

u2

second-order perturbation solution

\(u_{{\left( {0^{^\circ } } \right)}}\)

displacement of ultrasonic wave when the phase of the incident ultrasound is 0˚

\(u_{{\left( {180^{^\circ } } \right)}}\)

displacement of ultrasonic wave when the phase of the incident ultrasound is 180˚

\(v\)

particle velocity

w

line beam width,

\(x\)

propagation distance

\(\Delta \beta\)

variation in the nonlinear ultrasonic parameter

\(\varLambda\)

dislocation density

\(\alpha^{\prime}\)

displacement proportionality compensation factor

\(\alpha_{1}\)

displacement proportionality coefficient for the fundamental frequency

\(\alpha_{1,0}\)

displacement proportionality coefficient for the fundamental frequency for the reference material

\(\alpha_{2}\)

displacement proportionality coefficient for the second-order harmonic frequency

\(\alpha_{2,0}\)

displacement proportionality coefficient for the second-order harmonic frequency for the reference material

\(\alpha_{i}\)

displacement proportionality coefficient

\(\beta\)

second-order nonlinear ultrasonic parameter

\(\beta^{\prime}\)

relative nonlinear ultrasonic parameter

\(\beta_{0}\)

nonlinear ultrasonic parameter for the reference material

\(\beta_{e}\)

estimated nonlinear ultrasonic parameter

\(\beta_{p}\)

plate-shaped precipitates

\(\beta_{p} {{^{\prime}}}\)

rod-shaped precipitates

\(\beta _{p}^{{''}}\)

needle-shaped precipitates

ε

strain

\(\varepsilon_{J}\)

strain tensor

\(\varepsilon_{K}\)

strain tensor

εq

quantization error

\(\kappa\)

coefficient that determines the profile of the Tukey window

λ

wavelength

\(\rho\)

density

\(\sigma\)

stress

\(\sigma_{I}\)

stress tensor

\(\sigma_{y}\)

yield strength

ω

angular frequency

ω1

fundamental angular frequency

ω2

second-order harmonic angular frequency

Notes

Acknowledgements

A major portion of this work was financially supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2013M2A2A9043241).

We would like to thank all of the ISNDE Lab (Intelligent Sensing & Nondestructive Evaluation Lab, Department of Mechanical Convergence Engineering, Hanyang University) graduates over the past 27 years for their research efforts, discussions, and contributions to the field of nonlinear ultrasonics. A special tribute to Dr. Kyung-Cho Kim, the first Ph.D. graduate of ISNDE to pioneer nonlinear ultrasonics research in solid materials, Dr. Taehun Lee, developed fundamental technologies for the measurement of nonlinear ultrasonic parameters, and Dr. Chung-Seok Kim, who worked as a research Professor at Hanyang University from 2010 to 2012 (currently a Professor at Chosun University) on various applications of nonlinear ultrasonics for material characterization.

Many thanks to Dr. Yob Ha, Dr. Hyunmook Kim, and Dr. Hongjoon Kim, who developed miscellaneous methods for the measurement of nonlinear ultrasonic characteristics, including laser ultrasonic techniques, and Dr. Hogeon Seo who pioneered the measurement of contact acoustic nonlinearity and its synthetic imaging.

Special thanks to the students currently working in the ISNDE Lab: Ph.D. students Dong-Gi Song, Jihyun Jun, Seong-Hyun Park, and Master’s degree students Juyoung Ryu, Youngchang Lee, Seunghoon Lee, Jungyean Hong, who have improved the measurement systems, developed various application techniques, and contributed to the editing and data organization of this chapter.

References

  1. 1.
    J.K. Na, J.H. Cantrell, W.T. Yost, Linear and nonlinear ultrasonic properties of fatigued 410Cb stainless steel. Rev. Prog. Quant. Nondestr. Eval. 15, 1347–1352 (1996)CrossRefGoogle Scholar
  2. 2.
    A. Hikata, B.B. Chick, C. Elbaum, Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    A. Hikata, B.B. Chick, C. Elbaum, Effect of dislocations on finite amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3, 195–197 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hong, Z. Su, Q. Wang, L. Cheng, X. Qing, Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation. Ultrasonics 54, 770–778 (2014)CrossRefGoogle Scholar
  5. 5.
    J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    K.-Y. Jhang, Application of nonlinear ultrasonic to the NDE of material degradation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 540–548 (2000)CrossRefGoogle Scholar
  7. 7.
    K.H. Matlack, J.-Y. Kim, L.J. Jacobs, J. Qu, Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestr. Eval. 34, 1–23 (2014)Google Scholar
  8. 8.
    G. Gutiérrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects. NDT E Int. 94, 101–108 (2018)CrossRefGoogle Scholar
  9. 9.
    R.B. Thompson, O. Buck, D.O. Thompson, Higher harmonics of finite amplitude ultrasonic waves in solids. J. Acoust. Soc. Am. 59, 1087–1094 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    J. Kim, D.-G. Song, K.-Y. Jhang, Absolute measurement and relative measurement of ultrasonic nonlinear parameters. Res. Nondestr. Eval. 28, 211–225 (2017)CrossRefGoogle Scholar
  11. 11.
    W.B. Gauster, M.A. Breazeale, Detector for measurement of ultrasonic strain amplitudes in solids. Rev. Sci. Instrum. 37, 1544–1548 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Cantrell, W.T. Yost, Effect of precipitate coherency strains on acoustic harmonic generation. J. Appl. Phys. 81, 2957–2962 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    G.E. Dace, R.B. Thompson, L.J.H. Brasche, D.K. Rehbein, O. Buck, Nonlinear acoustics, a technique to determine microstructural changes in material. Rev. Prog. Quant. Nondestr. Eval. 10B, 1685–1692 (1991)CrossRefGoogle Scholar
  14. 14.
    G.E. Dace, R.B. Thompson, O. Buck, Measurement of the acoustic harmonic generation for materials characterization using contact transducers. Rev. Prog. Quant. Nondestr. Eval. 11B, 2069–2076 (1992)Google Scholar
  15. 15.
    D.J. Barnard, G.E. Dace, O. Buck, Acoustic harmonic generation due to thermal embrittlement of Inconel 718. J. Nondestr. Eval. 16, 67–75 (1997)Google Scholar
  16. 16.
    D.J. Barnard, Variation of nonlinearity parameter at low fundamental amplitudes. Appl. Phys. Lett. 74, 2447–2449 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    P. Li, W.P. Winfree, W.T. Yost, J.H. Cantrell, Observation of collinear beam-mixing by an amplitude modulated ultrasonic wave in a solid, in Ultrasonics Symposium (1983), pp. 1152–1156Google Scholar
  18. 18.
    P. Li, W.T. Yost, J.H. Cantrell, K. Salama, Dependence of acoustic nonlinearity parameter on second phase precipitates of aluminum alloys, in IEEE 1985 Ultrasonics Symposium (1985), pp. 1113–1115Google Scholar
  19. 19.
    K.-J. Lee, J. Kim, D.-G. Song, K.-Y. Jhang, Effect of window function for measurement of ultrasonic nonlinear parameter using fast Fourier Transform of tone-burst signal. J. Korean Soc. Nondestr. Test. 35, 251–257 (2015)CrossRefGoogle Scholar
  20. 20.
    G. Ren, J. Kim, K.-Y. Jhang, Relationship between second- and third-order acoustic nonlinear parameters in relative measurement. Ultrasonics 56, 539–544 (2015)CrossRefGoogle Scholar
  21. 21.
    D.C. Hurley, C.M. Fortunko, Determination of the nonlinear ultrasonic parameter using a michelson interferometer. Meas. Sci. Technol. 8, 634–642 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    T. Kang, T. Lee, S.-J. Song, H.-J. Kim, Measurement of ultrasonic nonlinearity parameter of fused silica and Al2024-T4. J. Korean Soc. Nondestr. Test. 33, 14–19 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Kim, K.-Y. Jhang, Measurement of ultrasonic nonlinear parameter by using non-contact ultrasonic receiver. Trans. Korean Soc. Mech. Eng. A 38, 1133–1137 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Demir, S. Gündüz, The effects of aging on machinability of 6061 aluminum alloy. Mater. Des. 30, 1480–1483 (2009)CrossRefGoogle Scholar
  25. 25.
    L.P. Troeger, E.A.S. Jr, Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater. Sci. Eng. A 277, 102–113 (2000)CrossRefGoogle Scholar
  26. 26.
    S. Rajasekaran, N.K. Udayashankar, J. Nayak, T4 and T6 treatment of 6061 Al-15 vol. % SiCP composite. ISRN Mater. Sci. 2012, 1–5 (2012)CrossRefGoogle Scholar
  27. 27.
    F. Ozturk, A. Sisman, S. Toros, S. Kilic, R.C. Picu, Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Mater. Des. 31, 972–975 (2010)CrossRefGoogle Scholar
  28. 28.
    W.F. Miao, D.E. Laughlin, Precipitation hardening in aluminum alloy 6022. Scripta Mater. 40, 873–878 (1999)CrossRefGoogle Scholar
  29. 29.
    G. Mrówka-Nowotnik, Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys. Arch. Mater. Sci. Eng. 46, 98–107 (2010)Google Scholar
  30. 30.
    J. Buha, R.N. Lumley, A.G. Crosky, K. Hono, Secondary precipitation in an Al-Mg-Si-Cu alloy. Acta Mater. 55, 3015–3024 (2007)CrossRefGoogle Scholar
  31. 31.
    X. Fang, M. Song, K. Li, Y. Du, Precipitation sequence of an aged Al-Mg-Si alloy. J. Min. Metall. Sect. B. 46, 171–180 (2010)CrossRefGoogle Scholar
  32. 32.
    G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46, 3893–3904 (1998)CrossRefGoogle Scholar
  33. 33.
    H. Jeong, S. Zhang, S. Cho, X. Li, Development of explicit diffraction corrections for absolute measurements of acoustic nonlinearity parameters in the quasilinear regime. Ultrasonics 70, 199–203 (2016)CrossRefGoogle Scholar
  34. 34.
    T.H. Lee, Measurement of ultrasonic nonlinearity and its application to nondestructive evaluation, Ph. D Dissertation, Hanyang University, 2010Google Scholar
  35. 35.
    L. Sun, S.S. Kulkarni, J.D. Achenbach, S. Krishnaswamy, Technique to minimize couplant-effect in acoustic nonlinearity measurements. J. Acoust. Soc. Am. 120, 2500–2505 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    I.-H. Choi, J.-I. Lee, G.-D. Kwon, K.-Y. Jhang, Effect of system dependent harmonics in the measurement of ultrasonic nonlinear parameter by using contact transducers. J. Korean Soc. Nondestr. Test. 28, 358–363 (2008)Google Scholar
  37. 37.
    K.-J. Lee, Influence of transducer and signal processing on the measurement of ultrasonic nonlinear parameter, Master Thesis, Hanyang University, 2016Google Scholar
  38. 38.
    Y. Xiang, M. Deng, F.-Z. Xuan, Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique. J. Nondestr. Eval. 33, 279–287 (2014)CrossRefGoogle Scholar
  39. 39.
    J.H. Cantrell, W.T. Yost, Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation. Appl. Phys. Lett. 77, 1952–1954 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    A. Metya, M. Ghosh, N. Parida, S.P. Sagar, Higher harmonic analysis of ultrasonic signal for ageing behavior study of C-250 grade maraging steel. NDT E Int. 41, 484–489 (2008)CrossRefGoogle Scholar
  41. 41.
    W.F. Miao, D.E. Laughlin, Precipitation hardening in aluminum alloy 6022. Scr. Mater. V 40, 873–878 (1999)CrossRefGoogle Scholar
  42. 42.
    J. Kim, K.-Y. Jhang, Evaluation of ultrasonic nonlinear characteristics in heat-treated aluminum alloy (Al-Mg-Si-Cu). Adv. Mater. Sci. Eng. 407846, 1–6 (2013)Google Scholar
  43. 43.
    J.H. Cantrell, X.G. Zhang, Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. J. Appl. Phys. 84, 5469–5472 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    M. Song, Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates. Mater. Sci. Eng., A 443, 172–177 (2007)CrossRefGoogle Scholar
  45. 45.
    R.S. Yassar, D.P. Field, H. Weiland, Transmission electron microscopy and differential scanning calorimetry studies on the precipitation sequence in an Al-Mg-Si alloy: AA6022. J. Mater. Res. 20, 2705–2711 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    S. Krishnan, M. O’Donnell, Transmit aperture processing for nonlinear contrast agent imaging. Ultrason. Imaging 18, 77–105 (1996)CrossRefGoogle Scholar
  47. 47.
    Y. Ohara, K. Kawashima, R. Yamada, H. Horio, Evaluation of amorphous diffusion bonding by nonlinear ultrasonic method. AIP Conf. Proc. 700, 944–951 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    A. Viswanath, B.P.C. Rao, S. Mahadevan, T. Jayakumar, B. Raj, Microstructural characterization of M250 grade maraging steel using nonlinear ultrasonic technique. J. Mater. Sci. 45, 6719–6726 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    F. Xie, Z. Guo, J. Zhang, Strategies for reliable second harmonic of nonlinear acoustic wave through cement-based materials. Nondestruct. Test. Eval. 29, 183–194 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    S. Choi, P. Lee, K.-Y. Jhang, A pulse inversion-based nonlinear ultrasonic technique using a single-cycle longitudinal wave for evaluating localized material degradation in plates. Int. J. Precis. Eng. Manuf. 20, 549–558 (2019)CrossRefGoogle Scholar
  51. 51.
    S. Zhang, X. Li, H. Jeong, S. Cho, H. Hu, Theoretical and experimental investigation of the pulse-echo nonlinearity acoustic sound fields of focused transducers. Appl. Acoust. 117, 145–149 (2017)CrossRefGoogle Scholar
  52. 52.
    H. Jeong, S. Cho, S. Zhang, X. Li, Acoustic nonlinearity parameter measurements in a pulse-echo setup with the stress-free reflection boundary. J. Acoust. Soc. Am. 143, EL237–EL242 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    C.-S. Kim, I.-K. Park, K.-Y. Jhang, N.-Y. Kim, Experimental characterization of cyclic deformation in copper using ultrasonic nonlinearity. J. Korean Soc. Nondestr. Test. 28, 285–291 (2008)Google Scholar
  54. 54.
    S. Choi, H. Seo, K.-Y. Jhang, Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Res. Nondestr. Eval. 26, 13–22 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Choi, T. Nam, K.-Y. Jhang, C.S. Kim, Frequency response of narrowband surface waves generated by laser beams spatially modulated with a line-arrayed slit mask. J. Korean Phys. Soc. 60, 26–30 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    S. Kenderian, D. Cerniglia, B.B. Djordjevic, R.E. Green, Laser-generated acoustic signal interaction with surface flaws on rail wheels. Res. Nondestr. Eval. 16, 195–207 (2005)CrossRefGoogle Scholar
  57. 57.
    C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques and Applications (Adam Hilger, Bristol, 1990)Google Scholar
  58. 58.
    J. Li, L. Dong, C. Ni, Z. Shen, H. Zhang, Application of ultrasonic surface waves in the detection of microcracks using the scanning heating laser source technique. Chin. Opt. Lett. 10, 111403–111406 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    D. Dhital, J.R. Lee, A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation. Exp. Mech. 52, 1111–1122 (2011)CrossRefGoogle Scholar
  60. 60.
    C. Ni, L. Dong, Z. Shen, J. Lu, The experimental study of fatigue crack detection using scanning laser point source technique. Opt. Laser Technol. 43, 1391–1397 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    S.-K. Park, S.-H. Baik, H.-K. Cha, Y.-M. Cheong, Y.-J. Kang, Nondestructive inspection system using optical profiles and laser surface waves to detect a surface crack. J. Korean Phys. Soc. 56, 333–337 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    A. Moura, A.M. Lomonosov, P. Hess, Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves. J. Appl. Phys. 103, 084911 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    C.-S. Kim, K.-Y. Jhang, Acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Chin. Phys. Lett. 29, 120701 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Hanyang UniversitySeongdong-gu, SeoulRepublic of Korea
  2. 2.Korea Atomic Energy Research InstituteDaejeonRepublic of Korea

Personalised recommendations