Advertisement

Integrated Voltage Equalizer Enhanced with Quasi-Z-Source Inverter for PV Panel Under Partial Shading

  • V. SivachidambaranathanEmail author
  • A. Rameshbabu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1040)

Abstract

The single-switch voltage equalizer with Quasi-Z-Source inverter for partial shading is proposed. The occurrence of multiple maximum power points in the PV system is settled, and the partial shading issue is focussed. Various parameters like output voltage of the converter, voltage gain and efficiency are analysed for the proposed system. The efficiency of the proposed system is 94% with a proper voltage balancing. The performance comparison between the ZSI and Q-ZSI is made validating the Q-ZSI for the PV application. The implementation of a 20 W system is made, and its results are tabulated.

Keywords

Quasi-Z-Source inverter Voltage equalizer Partial shading 

References

  1. 1.
    Maki, A., Valkealahti, S.: Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions. IEEE Trans. Energy Conv. 27(1), 173–183 (2012)CrossRefGoogle Scholar
  2. 2.
    Babu, A.R., Raghavendiran, T.A.: Performance enhancement of high voltage gain two phase interleaved boost converter using MPPT algorithm. J. Theoret. Appl. Inf. Technol. 68(2), 360–368 (2014). ISSN 1992-8645Google Scholar
  3. 3.
    Inoue, T., Koizumi, H.: A voltage equalizer applying a charge pump for energy storage systems. In: European Conference on Circuit Theory and Design, Aug 2009, pp. 169–172Google Scholar
  4. 4.
    Uno, M., Kukita, A.: Single-switch voltage equalizer using multistacked buck-boost converters for partially shaded photovoltaic modules. IEEE Trans. Power Electron. 30(6) (2015)CrossRefGoogle Scholar
  5. 5.
    Babu, A.R., Raghavendiran, T.A.: Analysis of non-isolated two phase interleaved high voltage gain boost converter for PV application. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 491–496. IEEE (2014)Google Scholar
  6. 6.
    Babu, A.R., Raghavendiran, T.A.: Performance analysis of novel three phase high step-up dc-dc interleaved boost converter using coupled inductor. In: 2015 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–8. IEEE (2015)Google Scholar
  7. 7.
    Peng, F.Z.: Z-source inverter. IEEE Trans. Ind. Appl. 39(2), 504–510 (2003)CrossRefGoogle Scholar
  8. 8.
    Loh, P.C., Blaabjerg, F.: Magnetically coupled impedance-source inverters. IEEE Trans. Ind. Appl. 49(5), 2177–2187 (2013)CrossRefGoogle Scholar
  9. 9.
    Guo, F., Fu, L.X., Lin, C.H., Li, C., Choi, W., Wang, J.: Development of an 85 kW bidirectional quasi-Z-source inverter with DC-link feedforward compensation for electric vehicle applications. IEEE Trans. Power Electron. 28(12), 5477–5488 (2013)CrossRefGoogle Scholar
  10. 10.
    Battiston, A., Miliani, E.-H., Pierfederici, S., Meibody-Tabar, F.: Efficiency improvement of a quasi-Z-source inverter-fed permanent-magnet synchronous machine-based electric vehicle. IEEE Trans. Transport. Electrif. 2(1), 14–23 (2016)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Jiang, S., Cintron-Rivera, J.G., Peng, F.Z.: Modeling and control of quasi-Z-source inverter for distributed generation applications. IEEE Trans. Ind. Electron. 60(4), 1532–1541 (2013)CrossRefGoogle Scholar
  12. 12.
    Ge, B., Abu-Rub, H., Peng, F.Z., Lei, Q., de Almeida, A.T., Ferreira, F.J.T.E., Sun, D., Liu, Y.: An energy-stored quasi-Z-source inverter for application to photovoltaic power system. IEEE Trans. Ind. Electron. 60(10), 4468–4481 (2013)CrossRefGoogle Scholar
  13. 13.
    Ayad, A., Hanafiah, S., Kennel, R.: A comparison of quasi-Z-source inverter and traditional two-stage inverter for photovoltaic application. In: Proceedings in International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, May 2015, pp. 1–8. Nuremberg, GermanyGoogle Scholar
  14. 14.
    Liu, Y., Abu-Rub, H., Ge, B.: Z-source/quasi-Z-source inverters: derived networks, modulations, controls, and emerging applications to photovoltaic conversion. IEEE Ind. Electron. Mag. 8(4), 32–44 (2014)CrossRefGoogle Scholar
  15. 15.
    Sivachidambaranathan, V., Dash, S.S.: Simulation of half bridge series resonant PFC DC to DC converter. In: IEEE International Conference on “Recent Advances in Space Technology Services & Climate Change—2010” (RSTS&CC-2010), Nov 13–15, pp. 146–148. Sathyabama University in association with Indian Space Research Organisation (ISRO), Bangalore and IEEE, IEEE Explore (2010). ISBN 978-1-4244-9184-1Google Scholar
  16. 16.
    Preeti Pauline Mary, M., Sivachidambaranathan, V.: Design of new bi-directional three phase parallel resonant high frequency AC link converter. Int. J. Appl. Eng. Res. 10(4), 8453–8468 (2015). ISSN 0973-4562Google Scholar
  17. 17.
    Preeti Pauline Mary, M., Sivachidambaranathan, V.: Enhancement of active power filter operational performance using SRF theory for renewable source. Indian J. Sci. Technol. 8(21), 71562, 1–7 (2015). ISSN 0974-6846Google Scholar
  18. 18.
    Indira, D., Sivachidambaranathan, V., Dash, S.S.: Closed loop control of hybrid switching scheme for LLC series-resonant half-bridge DC-DC converter. In: Proceedings of the “Second International Conference on Sustainable Energy and Intelligent System” (SEISCON 2011), July 20–22, pp. 295–298. IET Chennai and Dr. MGR University (2011)Google Scholar
  19. 19.
    Kavitha, M., Sivachidambaranathan, V.: Power factor correction in fuzzy based brushless DC motor fed by bridgeless buck boost converter. In: IEEE International Conference on Computation of Power Energy Information and Communication (ICCPEIC), IEEE, 22–23 Mar 2017, pp. 549–553 (2017). ISSN: 978-1-5090-4324-8/17/$31.00 ©2017Google Scholar
  20. 20.
    Geetha, V., Sivachidambaranathan, V.: A single switch parallel quasi resonant converter topology for induction heating application. Int. J. Power Electron. Drive Syst. (IJPEDS) 9(4), 1718–1724 (2018). ISSN 2088-8694CrossRefGoogle Scholar
  21. 21.
    Revathi, N., Sivachidambaranathan, V.: Load resonant for step up DC-DC converter by two stages quasi Z source network. J. Chem. Pharm. Sci. (JCHPS), Special Issue 10, 114–121 (2015). ISSN 0974-2115Google Scholar
  22. 22.
    Kavitha, M., Sivachidambaranathan, V.: PV based high voltage gain quadratic DC-DC converter integrated with coupled inductor. In: IEEE International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), 20–21 Apr 2016, pp. 607–612 (2016). ISBN 978-1-5090-0901-5Google Scholar
  23. 23.
    Kavitha, M., Sivachidambaranathan, V.: Comparison of different control techniques for interleaved DC-DC converter. Int. J. Power Electron. Drive Syst. (IJPEDS) 9(2), 641–647 (2018). ISSN 2088-8694CrossRefGoogle Scholar
  24. 24.
    Sivachidambaranathan, V.: High frequency isolated series parallel resonant converter. Indian J. Sci. Technol. 8(15), 52311, 1–6 (2015). ISSN 0974-6846Google Scholar
  25. 25.
    Sivachidambaranathan, V., Dash, S.S., Santhosh Rani, M.: Implementation of half bridge DC to DC converter using series resonant topology. Eur. J. Sci. Res. 74(3), 381–388 (2012). ISSN: 1450–216XGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of EEESathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations