Advertisement

Statistical Analysis of Target Tracking Algorithms in Thermal Imagery

  • Umesh GuptaEmail author
  • Preetisudha Meher
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1040)

Abstract

In the current scenario as we all know that target tracking is important aspect in almost every area of real life such as medical, ATM surveillance, border security, quality checking, weather forecasting, defence security, sea shore security and monitoring moving objects. For this reason, there is a great need to develop effective and efficient algorithm for target tracking which will be used in many research areas. To fulfil the need of current time, in this paper, a statistical analysis is performed using different detection algorithm with tracking algorithm like Kalman filter with single targets in infrared imagery. This will give a great help to researcher for developing an efficient algorithm in the context of target tracking.

Keywords

Infrared imagery Target tracking algorithms Kalman filter Target detection algorithms Single target Multiple targets 

Notes

Acknowledgements

We are highly grateful to IEEE OTCBVS WS Series Bench Real-World Infrared Database.

References

  1. 1.
    Bellis, B.M.: Origins of thermal imaging or infrared (IR) imaging. Available http://inventors.about.com/od/militaryhistoryinventions/p/thermal_image.htm (2019)
  2. 2.
    Sun, H., Wang, C., Wang, B., El-Sheimy, N.: Pyramid binary pattern features for real-time pedestrian detection from infrared videos. Neurocomputing 74, 797–804 (2011)CrossRefGoogle Scholar
  3. 3.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–577 (2003)CrossRefGoogle Scholar
  4. 4.
    Yin, Y., Man, H.: Adaptive mean shift for target-tracking in FLIR imagery. In: Wireless and Optical Communications Conference, pp. 1–3 (2009)Google Scholar
  5. 5.
    Wang, Z., Hou, Q., Hao, L.: Improved infrared target-tracking algorithm based on mean shift. Appl. Opt. 51, 5051–5059 (2012)CrossRefGoogle Scholar
  6. 6.
    Li, C., Jiang, N., Si, J., Abousleman, G.P.: Robust target detection and tracking in outdoor infrared video. IEEE Int. Conf. Acous. Speech Signal Process., pp. 1489–1492 (2008)Google Scholar
  7. 7.
    Wang, J.-T., Chen, D.-B., Chen, H.-Y., Yang, J.-Y.: On pedestrian detection and tracking in infrared videos. Pattern Recogn. Lett. 33, 775–785 (2012)CrossRefGoogle Scholar
  8. 8.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)CrossRefGoogle Scholar
  9. 9.
    Su, G., Ma, H., Hou, Y.: A robust approach for anti-jamming target tracking in forward looking infrared imagery. In: Sixth International Conference on Image and Graphics (ICIG), pp. 636–641 (2011)Google Scholar
  10. 10.
    Mirzaei, G., Majid, M.W., Ross, J., Jamali, M.M., Gorsevski, P.V., Frizado, J.P., et al.: Avian detection and tracking algorithm using infrared imaging. In: IEEE International Conference on Electro/Information Technology (EIT), pp. 1–4 (2012)Google Scholar
  11. 11.
    Heo, Duyoung, Lee, Eunju, Ko, ByoungChul: Pedestrian detection at night using deep neural networks and saliency maps. Electron. Imaging 2018(17), 1–9 (2018)CrossRefGoogle Scholar
  12. 12.
    De Oliveira, D., Wehrmeister, M.: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV. Sensors 18(7), 2244 (2018)CrossRefGoogle Scholar
  13. 13.
    Liu, Q., He, Z.: PTB-TIR: a thermal infrared pedestrian tracking benchmark. arXiv:1801.05944 (2018)
  14. 14.
    Song, E., et al.: AHD: thermal image-based adaptive hand detection for enhanced tracking system. IEEE Access 6, 12156–12166 (2018)CrossRefGoogle Scholar
  15. 15.
    Haelterman, R., et al.: Pedestrian detection and tracking in thermal images from aerial MPEG videos (2018)Google Scholar
  16. 16.
    Lahouli, I., et al.: Pedestrian tracking in the compressed domain using thermal images. In: International Workshop on Representations, Analysis and Recognition of Shape and Motion From Imaging Data. Springer, Cham (2017)Google Scholar
  17. 17.
    Zheng, Y., Fan, L.: Moving object detection based on running average background and temporal difference. In: International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 270–272 (2010)Google Scholar
  18. 18.
    Van Droogenbroeck, M., Paquot, O.: Background subtraction: experiments and improvements for vibe. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 32–37 (2012)Google Scholar
  19. 19.
    Hung, M.-H., Pan, J.-S., Hsieh, C.-H.: Speed up temporal median filter for background subtraction. In: First International Conference on Pervasive Computing Signal Processing and Applications (PCSPA), pp. 297–300 (2010)Google Scholar
  20. 20.
    Dar-Shyang, L.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27, 827–832 (2005)CrossRefGoogle Scholar
  21. 21.
    Venkataraman, V., Fan, G., Havlicek, J., Fan, X., Zhai, Y., Yeary, M.: Adaptive Kalman filtering for histogram-based appearance learning in infrared imagery (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Piccardi, M.: Background subtraction techniques: a review. IEEE Int. Conf. Syst. Man Cybern. 4, 3099–3104 (2004)Google Scholar
  23. 23.
    Genin, L., Champagnat, F., Le, B.G.: Single frame IR point target detection based on a Gaussian mixture model classification, pp. 854111–854111 (2012)Google Scholar
  24. 24.
    Gupta, U., Dutta, M., Vadhavaniya, M.: Analysis of target tracking algorithm in thermal imagery. Int. J. Comput. Appl. 71, 12443–19140 (2013)Google Scholar
  25. 25.
    Ma, Y., et al.: Pedestrian detection and tracking from low-resolution unmanned aerial vehicle thermal imagery. Sensors 16(4), 446 (2016)CrossRefGoogle Scholar
  26. 26.
    Goswami, M.S.: Unusual event detection for low resolution video using kalman filtering. M.E. Thesis, Computer Science and Engineering. Panjab University, India (2018)Google Scholar
  27. 27.
    Miezianko, R.: IEEE OTCBVS WS series bench: terravic motion infrared database. Available http://www.cse.ohio-state.edu/otcbvs-bench/ (2019)
  28. 28.
    Gonzalez, R.C.: Digital image processing, 3rd edn.Wiley (2019)Google Scholar
  29. 29.
    Perkins, S., Fisher, R., Walker, A., Wolfart, E.: Connected components labeling. Available http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm (2000)
  30. 30.
    Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)CrossRefGoogle Scholar
  31. 31.
    Ling, H., Bai, L., Blasch, E., Mei, X.: Robust infrared vehicle tracking across target pose change using l1 regularization. In: International Conference on Info Fusion (2010)Google Scholar
  32. 32.
    Performance Evaluation Parameters. Available http://100dialysis.wordpress.com/tag/research/ (2019)

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of TechnologyYupiaIndia
  2. 2.Department of Electronics and EngineeringNational Institute of TechnologyYupiaIndia

Personalised recommendations