Analysis of Human Serum and Whole Blood for Transient Biometrics Using Minerals in the Human Body

  • N. AmbigaEmail author
  • A. Nagarajan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1040)


Transient biometrics is the new concept that can be applied to biometric characteristics that do change over a period of time and that are constant as possible. We came with the elements in the body which is a transient biometric with a lifetime of approximately two months. For healthy people, this can be a quiet good biometric recognition system because for healthy people, the mineral concentration of whole blood and serum is constant over a period of time. The better understanding of the range and variability of the content of these minerals in the biological samples can provide knowledge about the relationship between the mineral content and the health of individuals. This paper determines the mineral content of an individual which varies from one person to another, and concentration remains unchanged for healthy people. So for other people with disease, it will be a transient biometrics. This paper describes the analysis of mineral content for the determination of biometric authentication. In this work, we used the open data set of human serum and whole blood available from National Institute of Health Monitoring (NIHM).


Biometrics Whole blood Serum Minerals 



This research work has been supported by RUSA PHASE 2.0, Alagappa University, Karaikudi, India.

Ethical Statement

This manuscript does not contain samples that were obtained from clinical studies, and no personally identifiable patient data is included.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Barbosa, I.B., Theoharis, T., Schellewald, C., Athwa, C.: Transient biometrics using finger nails. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 29 Sept–2 Oct 2013, Arlington, VA, USA. Date Added to IEEE Xplore: 16 January 2014, IEEE. Electronic ISBN: 978-1-4799-0527-0, INSPEC Accession Number: 14042228.
  2. 2.
    Harrington, J.M., Young, D.J., Essader, A.S., Sumner, S.J., Levine, K.E.: Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method. Biol. Trace Elem. Res. 160(1), 132–142 (2014). Epub 2014 Jun 11CrossRefGoogle Scholar
  3. 3.
    Warda Hussain, A.M., Yasmeen, F., Khan, S.Q., Butt, T.: Reference range of zinc in adult population (20–29) years of Lahore, Pakistan. Pak. J. Med. Sci. 30(3), 5445–5548 (2014). Scholar
  4. 4.
    Jantzen, C., Jorgensen, H.L., Duss, B.R., Sporring, S.L., Lauritzen, J.B.: Chromium and cobalt ion concentrations in blood and serum following types of metal-on-metal hip arthoplasties. Acta Orthop. 84(3), 229–236 (2013)CrossRefGoogle Scholar
  5. 5.
    Slotnick, M.J., Nriagu, J.O., Johnson, M.M., Linder, A.M., Savoie, K.L., Jamil, H.J., Hammad, A.S.: Profiles of trace elements in toenails of Arab-Americans in the Detroit area. Michigan. Biol. Trace Elem. Res. 107, 113 (2005)CrossRefGoogle Scholar
  6. 6.
    Boogaard, P.J., Money, C.D.: A proposed framework for the interpretation of biomonitoring data. Environ. Health 7(Suppl 1), S12 (2008). Scholar
  7. 7.
    Metrology of Nail Clippings as Trace Element Biomarkers, Proefschrift, ISBN 978-1-61499-287-5Google Scholar
  8. 8.
    Wee, B.S., Ebihara, M.: Neutron activation analysis and assessment of trace elements in fingernail from residents of Tokyo, Japan (Analisis Pengaktifan Neutron dan Penilaian Unsur Surih dalam Kuku Penduduk di Tokyo, Jepun). Sains Malaysiana 46(4), 605–613 (2017). Scholar
  9. 9.
    Derived from the Canadian Health Measures Survey 2007–2013. Int. J. Hygiene Environ. Health 220, 189–200 (2017).
  10. 10.
    Versick, J., Mccall, J.T.: Trace elements in human body fluids and tissues. CRC Crit. Rev. Clin. Lab. Sci. 22(2), 97–184 (1985)CrossRefGoogle Scholar
  11. 11.
    Dermiencea, M., Lognaya, G., Mathieub, F., Goyens, P.: Effects of thirty elements on bone metabolism. J. Trace Elem. Med. Biol. 32, 86–106 (2015). Scholar
  12. 12.
    Zhu, Y., Wang, Y., Meng, F., Li, L., Wu, S., Mei, X., Li, H.: Distribution of Metal and Metalloid Elements in Human Scalp Hair in Taiyuan, ChinaGoogle Scholar
  13. 13.
    Zhangd, G., Wua, D.: Ecotoxicol. Environ. Saf. 148, 538–545 (2018)CrossRefGoogle Scholar
  14. 14.
    Camina Martín., M.A., de Mateo Silleras, B., Redondo del Río, M.P.: Body Composition in Older Adults. Cons handbook of Models for Human Aging (2016)Google Scholar
  15. 15.
    Mazzoccoli, G.: Body composition: where and when. Eur. J. Radiol. PII: S0720-048X(15)30140-6
  16. 16.
    Karatelad, S., Ward, N.I., Zeng, I.S., Paterson, J.: Status and interrelationship of toenail elements in Pacific children. J. Trace Elem. Med Biol. 46, 10–16 (2018)CrossRefGoogle Scholar
  17. 17.
    Usuda, K., Kono, K., Dote, T., Atanabe, M., Shimizu, H., Tanimoto, Y., Yamadori, E.: An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ. Health Prev. Med. 12(November), 231–237 (2007)CrossRefGoogle Scholar
  18. 18.
    Liu T.: The scientific hypothesis of an “energy system” in the human body. J. Tradit. Chin. Med. Sci. 5, 29e34 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bel’skaya, L.V., Kosenok, V.K., Sarf E.A.: Chronophysiological features of the normal mineral composition of human saliva. Arch. Oral Biol. PII:S0003 9969(17)3020 Reference: AOB 3927
  20. 20.
    Jha, S.K., Hayashi, K.: Body odor classification by selecting optimal peaks of chemical compounds in GC–MS spectra using filtering approaches. Int. J. Mass Spectrom. 8-3-2017, Oct 2015. PII: S1387-380 6(16)30290 Reference: MASPEC 15769
  21. 21.
    Chang, R.: Chemistry, 9th Edn, p. 52. McGraw-Hill (2007)Google Scholar
  22. 22.
    Poddalgoda, D., Macey, K., Jayawardene, I., Krishnan, K.: Derivation of biomonitoring equivalent for inorganic tin for interpreting population-level urinary biomonitoring data. Regul. Toxicol. Pharmacol. 81, 430–436 (2016)CrossRefGoogle Scholar
  23. 23.
    Hu, Z., et al. (eds.): Advances in Artificial Systems for Medicine and Education. Detection of Hidden Mineral Imbalance in the Human Body by Testing Chemical Composition of Hair or Nails. Advances in Intelligent Systems and Computing 658, Scholar
  24. 24.
    . Kaur, K., Gupta, R., Saraf, S.A., Saraf, S.K.: The metal of life. Compr. Rev. Food Sci. Food Saf. 13, 358–376 (2014). Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samplesGoogle Scholar
  25. 25.
    Saiki, M., Vasconcellos, M.B.A., de Arauz, L.J., Fulfaro, R.: Determination of trace elements in human head hair by neutron activation analysis. J. Radioanal. Nucl. Chem. 236(12), 25–28 (1998)CrossRefGoogle Scholar
  26. 26.
    Christensen, J.M., Ihnat, M., Stoeppler, M., Thomassen, Y., Veillon, C., Wolynetz, M., Fresenius, Z.: Human body fluids—IUPAC proposed reference materials for trace elements analysis. Anal. Chem. 326, 639–642 (1987)CrossRefGoogle Scholar
  27. 27.
    Michalke, B., Rossbach, B., Göen, T., Schäferhenrich, A., Scherer, G.: Saliva as a Matrix for Human Biomonitoring in Occupational and Environmental Medicine. Springer, Berlin, Heidelberg (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer ApplicationsAlagappa UniversityKaraikudiIndia

Personalised recommendations