Detection and Prediction of Schizophrenia Using Magnetic Resonance Images and Deep Learning

  • S. Srivathsan
  • B. Sreenithi
  • J. NarenEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1040)


Researchers are continuously making breakthroughs on the impact of deep learning in the medical industry. This approach of Deep Learning (DL) in neuroimaging creates new insights in modification of brain structures during various disorders, helping capture complex relationships that may not have been visible otherwise. The main aim of proposed work is to effectively detect the presence of schizophrenia, a mental disorder that has drastic implications and is hard to spot, using Magnetic Resonance Image Features from fMRI Database. Dataset is then fed to a Neural Network classifier, which learns to predict and give indications for preventing the onset of Schizophrenia using regression models.


Schizophrenia Neural network Deep learning MRI FNC SBM 


  1. 1.
    Lawrie, S., Abukmeil, S.: Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. Br. J. Psychiatry 172(2), 110–120 (1998). Scholar
  2. 2.
    Weinberger, D.R., Torrey, E.F., Neophytides, A.N., Wyatt, R.J.: Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch. Gen. Psychiatry 36(7), 735–739 (1979)CrossRefGoogle Scholar
  3. 3.
    Fornito, A., Yücel, M., Patti, J., Wood, S.J., Pantelis, C.: Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr. Res. 108(1–3), 104–113 (2009). ISSN 0920-9964CrossRefGoogle Scholar
  4. 4.
    Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014). Scholar
  5. 5.
    Mohammad, A., Kent, K., Godfrey, P., Vince, C.: Classification of schizophrenia patients based on resting-state functional network connectivity. Front. Neurosci. 3, 133 (2013).
  6. 6.
    Segall, J.M., Allen, E.A., Jung, R.E., Erhardt, E.B., Arja, S.K., Kiehl, K.A., Calhoun, V.D.: Correspondence between structure and function in the human brain at rest. Front. Neuroinf. 6, 10 (2012).
  7. 7.
    Xu, L., Groth, K.M., Pearlson, G., Schretlen, D.J., Calhoun, V.D.: Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum. Brain Mapp. 30, 711–724 (2009). Scholar
  8. 8.
    Lecun, Y., Bengio, J., Hinton, J.: Deep learning. Nature 521, 436 (2015). Scholar
  9. 9.
    Lee, J.G., Jun, S., Cho, Y.W., Lee, H., Kim, G.B., Seo, J.B., Kim, N.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017). Scholar
  10. 10.
    Sharma, A., Ramkiran, S.: MRI based schizophrenia patient classification: a meta-cognitive approach. In: 2015 International Conference on Cognitive Computing and Information Processing (CCIP), Noida, pp. 1–6, 2015.
  11. 11.
    Zhang, J., Zong, C.: Deep neural networks in machine translation: an overview. IEEE Intell. Syst. 30(05), 16–25 (2015). Scholar
  12. 12.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). ISSN 0893-6080, Scholar
  13. 13.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)Google Scholar
  14. 14.
    Allen, E.A., Erhardt, E.B., Damaraju, E., Gruner, W., Segall, J.M., Silva, R.F., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A.M.: A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5, 2 (2011)Google Scholar
  15. 15.
    Ulloa, A., Plis, S., Erhardt, E., Calhoun, V.: Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. In: 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, pp. 1–6, 2015.
  16. 16.
    Nimkar, A.V., Kubal, D.R.: Optimization of schizophrenia diagnosis prediction using machine learning techniques. In: 2018 4th International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, pp. 1–6, 2018.
  17. 17.
    Talo, M., Baloglu, U.B., Yıldırım, Ö., Acharya, U.R.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188 (2019). ISSN 1389-0417, Scholar
  18. 18.
    de Moura, A.M., Pinaya, W.H.L., Gadelha, A., Zugman, A., Noto, C., Cordeiro, Q., Belangero, S.I., Jackowski, A.P., Bressan, R.A., Sato, J.R.: Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach. Psychiatry Res. Neuroimaging 275, 14–20 (2018). ISSN 0925-4927Google Scholar
  19. 19.
    Bordier, C., Nicolini, C., Forcellini, G., Bifone, A.: Disrupted modular organization of primary sensory brain areas in schizophrenia. NeuroImage Clin. 18, 682–693 (2018). ISSN 22131582, Scholar
  20. 20.
    De Pierrefeu, A., Löfstedt, T., Laidi, C., Hadj-Selem, F., Bourgin, J., Hajek, T., Spaniel, F., Kolenic, M., Ciuciu, P., Hamdani, N., Leboyer, M.: Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatr. Scand. 1–10 (2018) (Wiley)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.SASTRA Deemed UniversityTirumalaisamudram, ThanjavurIndia

Personalised recommendations