Advertisement

Physicochemical Properties of Nanocellulose Extracted from Pineapple Leaf Fibres and Its Composites

  • Ismail Muhamad FareezEmail author
  • Nazmul Haque
  • Der Juin Ooi
  • Ainil Hawa Jasni
  • Fauziah Abd Aziz
Chapter
  • 7 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

Significant advancement on cellulose-based biomaterial research has also led to the development of nano-sized pineapple leaf cellulose fibres with wide application potentials. The present chapter presents the comprehensive review of cellulose fibre structure extracted from different pineapple varieties, covering some aspects related to the structure of this natural cellulose in terms of its morphology, chemical, physical and mechanical properties. This chapter also briefly introduces the fundamentals of nanocellulose and discussed the isolation and properties of pineapple leaf cellulose nanofibrils, nanofibrillated cellulose and cellulose nanocrystals in view to open further areas of composite study on the ideal selection of these nanomaterials for industrial use.

Keywords

Cellulose Pineapple leaf fibre (PALF) Nanocellulose Crystallinity Mechanical properties 

References

  1. 1.
    Madhu P, Sanjay M, Senthamaraikannan P, Pradeep S, Saravanakumar S, Yogesha B (2018) A review on synthesis and characterization of commercially available natural fibers: part-I. J Nat Fiber 1–13Google Scholar
  2. 2.
    Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym SciGoogle Scholar
  3. 3.
    Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549CrossRefGoogle Scholar
  4. 4.
    Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefGoogle Scholar
  5. 5.
    Khakalo A, Vishtal A, Retulainen E, Filpponen I, Rojas OJ (2017) Mechanically-induced dimensional extensibility of fibers towards tough fiber networks. Cellulose 24(1):191–205CrossRefGoogle Scholar
  6. 6.
    Satyanarayana K, Pillai C, Sukumaran K, Pillai S, Rohatgi P, Vijayan K (1982) Structure property studies of fibres from various parts of the coconut tree. J Mater Sci 17(8):2453–2462CrossRefGoogle Scholar
  7. 7.
    Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRefGoogle Scholar
  8. 8.
    Fareez IM, Ibrahim NA, Yaacob WMHW, Razali NAM, Jasni AH, Aziz FA (2018) Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25(8):4407–4421CrossRefGoogle Scholar
  9. 9.
    Fernández G, Pomilio AB (2003) Optimized growth conditions and determination of the catalytic type of the peptidase complex from a novel callus culture of pineapple (Ananas comosus). Mol Med Chem 1:39–49Google Scholar
  10. 10.
    Chan Y, Coppens DEG, Sanewski GM (2002) Breeding and variety improvement. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple, botany, production and uses. CABI Publishing, New York, pp 33–35Google Scholar
  11. 11.
    Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090CrossRefGoogle Scholar
  12. 12.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  13. 13.
    Jose S, Salim R, Ammayappan L (2016) An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J Nat Fiber 13(3):362–373CrossRefGoogle Scholar
  14. 14.
    Neto ARS, Araujo MA, Barboza RM, Fonseca AS, Tonoli GH, Souza FV, Mattoso LH, Marconcini JM (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crop Prod 64:68–78CrossRefGoogle Scholar
  15. 15.
    Verma D, Gope P, Shandilya A, Gupta A, Maheshwari M (2013) Coir fibre reinforcement and application in polymer composites. A Environ Sci 4(2):263–276Google Scholar
  16. 16.
    Siregar J, Sapuan S, Rahman M, Zaman H (2008) Characterization and chemical composition of short pineapple leaf fibres (PALF). In: Proceeding of postgraduate seminar on natural fibre composites. Faculty of Engineering, Universiti Putra Malaysia, Serdang, SelangorGoogle Scholar
  17. 17.
    Khalil HSA, Alwani MS, Omar AKM (2007) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1(2):220–232Google Scholar
  18. 18.
    Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas A (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725Google Scholar
  19. 19.
    Wan Nadirah WO, Jawaid M, Al Masri AA, Abdul Khalil HPS, Suhaily SS, Mohamed AR (2012) Cell Wall Morphology, Chemical and Thermal Analysis of Cultivated Pineapple Leaf Fibres for Industrial Applications. J Polym Env 20 (2):404–411Google Scholar
  20. 20.
    Santos RMD, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crop Prod 50:707–714CrossRefGoogle Scholar
  21. 21.
    Banik S, Nag D, Debnath S (2011) Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. In: Proceeding Paper, Semantic ScholarsGoogle Scholar
  22. 22.
    Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Awang H, Mohd Aripin A (2013) Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study. BioResources 9(1):872–880Google Scholar
  23. 23.
    Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost-effectiveness. Mater Design 55:292–299Google Scholar
  24. 24.
    Hazarika D, Gogoi N, Jose S, Das R, Basu G (2017) Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J Clean Prod 141:580–586Google Scholar
  25. 25.
    Fan LT, Gharpuray MM, Lee Y-H (1987) Nature of cellulosic material. Cellulose hydrolysis. Springer, Berlin Heidelberg, GermanyCrossRefGoogle Scholar
  26. 26.
    Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  27. 27.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  28. 28.
    Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRefGoogle Scholar
  29. 29.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRefGoogle Scholar
  30. 30.
    Song Y, Zhang J, Zhang X, Tan T (2015) The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Bioresour Technol 193:164–170CrossRefGoogle Scholar
  31. 31.
    Razali M, Amira N, Azraaie N, Abidin NAMZ, Ibrahim NA, Abdul Aziz F, Abdul Rahman S (2015) Effect of chemical treatment on crystalline cellulose: changes in crystallinity and functional groups of cellulose. Adv Mater Res 35–39Google Scholar
  32. 32.
    Lee K-Y, Santmartí A (2018) Crystallinity and thermal stability of nanocellulose. In: Nanocellulose and sustainability. CRC Press, pp 67–86Google Scholar
  33. 33.
    Nickerson R, Habrle J (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRefGoogle Scholar
  34. 34.
    Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRefGoogle Scholar
  35. 35.
    French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20(1):583–588CrossRefGoogle Scholar
  36. 36.
    Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9CrossRefGoogle Scholar
  37. 37.
    Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8CrossRefGoogle Scholar
  38. 38.
    Yu H-Y, Qin Z-Y, Liu L, Yang X-G, Zhou Y, Yao J-M (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28CrossRefGoogle Scholar
  39. 39.
    Wei Z, Sinko R, Keten S, Luijten E (2018) Effect of surface modification on water adsorption and interfacial mechanics of cellulose nanocrystals. ACS Appl Mater Interface 10(9):8349–8358CrossRefGoogle Scholar
  40. 40.
    Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2017) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett 9(1):70–75CrossRefGoogle Scholar
  41. 41.
    Gauthier R, Joly C, Coupas A, Gauthier H, Escoubes M (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19(3):287–300CrossRefGoogle Scholar
  42. 42.
    Aziz FA, Surip S, Bonnia N, Sekak K (2018) The effect of pineapple leaf fiber (PALF) incorporation into polyethylene terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conf Ser Earth Environ Sci 1:012082Google Scholar
  43. 43.
    Vodounon NA, Kanali C, Mwero J (2018) Compressive and flexural strengths of cement stabilized earth bricks reinforced with treated and untreated pineapple leaves fibres. Open J Compos Mater 8(4):145–160CrossRefGoogle Scholar
  44. 44.
    Jaafar J, Siregar JP, Oumer AN, Hamdan MHM, Tezara C, Salit MS (2018a) Experimental investigation on performance of short pineapple leaf fiber reinforced tapioca biopolymer composites. BioResources 13(3):6341–6355Google Scholar
  45. 45.
    Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, Monteiro SN (2015) Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater Res 18:185–192CrossRefGoogle Scholar
  46. 46.
    Wahyuningsih K, Iriani ES, Fahma F (2016) Utilization of cellulose from pineapple leaf fibers as nanofiller in polyvinyl alcohol-based film. Indones J Chem 16(2):181–189CrossRefGoogle Scholar
  47. 47.
    Jaafar J, Siregar JP, Piah MBM, Cionita T, Adnan S, Rihayat T (2018b) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Env 26(11):4271–4281Google Scholar
  48. 48.
    Munajad A, Subroto C (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364CrossRefGoogle Scholar
  49. 49.
    Krause C, Dreier L, Fehlmann A, Cross J (2014) The degree of polymerization of cellulosic insulation: review of measuring technologies and its significance on equipment. In: 2014 IEEE electrical insulation conference (EIC). IEEE, pp 267–271Google Scholar
  50. 50.
    Santmartí A, Lee K-Y (2018) Chapter 5: crystallinity and thermal. In: Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press, Boca Raton, p 67Google Scholar
  51. 51.
    Santosha PCR, Gowda ASSS, Manikanth V (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Mater Today Proc 5(2):5631–5635CrossRefGoogle Scholar
  52. 52.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interface 15(2–3):169–191CrossRefGoogle Scholar
  53. 53.
    Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRefGoogle Scholar
  54. 54.
    George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRefGoogle Scholar
  55. 55.
    Chollakup R, Tantatherdtam R, Ujjin S, Sriroth K (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119(4):1952–1960CrossRefGoogle Scholar
  56. 56.
    Hujuri U, Chattopadhay SK, Uppaluri R, Ghoshal AK (2008) Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. J Appl Polym Sci 107(3):1507–1516CrossRefGoogle Scholar
  57. 57.
    Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798CrossRefGoogle Scholar
  58. 58.
    George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRefGoogle Scholar
  59. 59.
    Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2)Google Scholar
  60. 60.
    Balakrishnan P, Gopi S, Geethamma VG, Kalarikkal N, Thomas S (2018) Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative studies on reinforcing efficiency on starch nanocomposites. Macromol Symp 380(1)Google Scholar
  61. 61.
    Shih YF, Chou MY, Lian HY, Hsu LR, Chen-Wei SM (2018) Highly transparent and impact-resistant PMMA nanocomposites reinforced by cellulose nanofibers of pineapple leaves modified by eco-friendly methods. Express Polym Lett 12(9):844–854CrossRefGoogle Scholar
  62. 62.
    Abdul Khalil HPS, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Islam Sarker MZ, Fazita MRN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ismail Muhamad Fareez
    • 1
    Email author
  • Nazmul Haque
    • 1
  • Der Juin Ooi
    • 1
  • Ainil Hawa Jasni
    • 2
  • Fauziah Abd Aziz
    • 3
  1. 1.Department of Oral Biology and Biomedical Sciences, Faculty of DentistryMAHSA UniversityJenjaromMalaysia
  2. 2.Chemical Defense Research Centre (CHEMDEF), National Defence University of MalaysiaKuala LumpurMalaysia
  3. 3.Department of PhysicsCentre of Defense Foundation Studies, National Defence University of MalaysiaKuala LumpurMalaysia

Personalised recommendations