Brain Research and Arbitrary Multiscale Quantum Uncertainty

  • Rodolfo A. FioriniEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1072)


The fact that we can build devices that implement the same basic operations as those the nervous system uses leads to the inevitable conclusion that we should be able to build entire systems based on the network organizing principles used by the nervous system. Nevertheless, the human brain is at least a factor of 1 billion more efficient than our present digital technology, and a factor of 10 million more efficient than the best digital technology that we can imagine. The unavoidable conclusion is that we still have something fundamental to learn from the brain and neurobiology about new ways and much more effective forms of computation. To acquire new knowledge on multiscale system uncertainty management, three specific interpretations of the Heisenberg Uncertainty Principle are presented and discussed, even at macroscale level. To solve complex, arbitrary multiscale system problems, by advanced deep learning and deep thinking systems, we need a unified, integrated, convenient, and universal representation framework, by considering information not only on the statistical manifold of model states, but also on the combinatorical manifold of low-level discrete, directed energy generators. Understanding this deep layer of thought is vital to develop highly competitive, reliable and effective human-centered symbiotic autonomous systems.


Knowledge representation Neuroscience Cognition and behavior Machine learning Modeling Simulation CICT Deep learning 



Author acknowledges the continuous support from the CICT CORE Group of Politecnico di Milano University, Milano, Italy, for extensive computational modelling, simulation resources and enlightening talks. Furthermore, the author is grateful to anonymous reviewers for their perceptive and helpful comments, which helped the author substantially improve previous versions of the manuscript.


  1. 1.
    Fiorini, R.A.: More effective biomedical experimentation data by CICT advanced ontological uncertainty management techniques. Int. J. Biol. Biomed. Eng. 9, 29–41 (2015)Google Scholar
  2. 2.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, 245–251 (2005). Scholar
  3. 3.
  4. 4.
    Human Connectome Project.
  5. 5.
  6. 6.
    Markram, H., Muller, E., Ramaswamy, S., Hill, S.L., Segev, I., Schürmann, F., et al.: Reconstruction and simulation of neocortical microcircuitry. Cell 163(2), 456–492 (2015)CrossRefGoogle Scholar
  7. 7.
    Horvitz, H.R.: Worms, life, and death (Nobel lecture). ChemBioChem 4, 697–711 (2003)CrossRefGoogle Scholar
  8. 8.
    Shapshak, P.: Artificial intelligence and brain. Bioinformation 14(1), 38–41 (2018)CrossRefGoogle Scholar
  9. 9.
    Resconi, G.: Geometry of Knowledge for Intelligent Systems. Studies on Computational Intelligence, vol. 407. Springer, Berlin (2013). Scholar
  10. 10.
    Azevedo, F.A.C., et al.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513(5), 532–541 (2009)CrossRefGoogle Scholar
  11. 11.
    Brotherson, S.: Understanding brain development in young children, FS-609. n.d. NDSU Extension Service, April 2009.
  12. 12.
    Haueis, P.: Meeting the brain on its own terms. Front. Hum. Neurosci. (2014).
  13. 13.
    Biswal, B.B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M.: Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107, 4734–4739 (2010). Scholar
  14. 14.
    Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2011)zbMATHGoogle Scholar
  15. 15.
    Sporns, O.: Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014). Scholar
  16. 16.
    Hagmann, P., et al.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159, 1479–1493 (2008)CrossRefGoogle Scholar
  17. 17.
    Zorzos, A.N., Scholvin, J., Boyden, E.S., Fonstad, C.G.: Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37(23), 4841–4843 (2012)CrossRefGoogle Scholar
  18. 18.
    Cruz, L., et al.: A statistically based density map method for identification and quantification of regional differences in microcolumnarity in the monkey brain. J. Neurosci. Methods 141(2), 321–332 (2005)CrossRefGoogle Scholar
  19. 19.
    Buxhoeveden, D.P., Casanova, M.F.: The minicolumn hypothesis in neuroscience. Brain 125(5), 935–951 (2002)CrossRefGoogle Scholar
  20. 20.
    Buldirev, S.V., Cruz, L., Gomez-Isla, T., Gomez-Tortosa, E., Havlin, S., Le, R.: Descrimination of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc. Natl. Acad. Sci. U.S.A. 97, 5039–5043 (2000)CrossRefGoogle Scholar
  21. 21.
    Blagoev, K.B., et al.: Modelling the magnetic signature of neuronal tissue. Neuroimage 37, 137–148 (2007)CrossRefGoogle Scholar
  22. 22.
    Howard, N., Hussain, A.: The fundamental code unit of the brain: towards a new model for cognitive geometry. Cogn. Comput. 10(3), 426–436 (2018)CrossRefGoogle Scholar
  23. 23.
    Fiorini, R.A.: From computing with numbers to computing with words. In: Howard, N., Wang, Y., Hussain, A., Hamdy, F., Widrow, B., Zadeh, L.A. (eds.) Proceedings of the IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing, pp. 84–91. IEEE Press, New York (2017)Google Scholar
  24. 24.
    Tononi, G., Boly, M., Massimini, M., Koch, C.: Integrated information theory: from consciousness to its physical substrate. Nat. Rev. Neurosci. 17(7), 450–461 (2016)CrossRefGoogle Scholar
  25. 25.
    Fiorini, R.A.: How random is your tomographic noise? A number theoretic transform (NTT) approach. Fundam. Infomaticae 135(1–2), 135–170 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wang, Y., et al.: Cognitive intelligence: deep learning, thinking, and reasoning by brain-inspired systems. Int. J. Cogn. Inform. Nat. Intell. 10(4), 1–21 (2016)CrossRefGoogle Scholar
  27. 27.
    Fiorini, R.A.: Brain-inspired systems and predicative competence. In: Howard, N., Wang, Y., Hussain, A., Hamdy, F., Widrow, B., Zadeh, L.A. (eds.) Proceedings of the IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing, pp. 268–275. IEEE Press, New York (2017)Google Scholar
  28. 28.
    Fiorini, R.A.: A cybernetics update for competitive deep learning system. In: Proceedings of the 2nd International Electronic Conference on Entropy and Its Applications. MDPI, 15–30 November 2015.
  29. 29.
    Fiorini, R.A.: Human-centered symbiotic system science. In: Soda, P., et al. (eds.) Proceedings of the IEEE ICCI*CC 2019, 18th International Conference on Cognitive Informatics and Cognitive Computing, pp. 286–292. IEEE Press, New York (2019)Google Scholar
  30. 30.
    LeDoux, J.: The Emotional Brain: The Mysterious Underpinnings of Emotional Life. Weidenfeld & Nicolson, Great Britain (1998)Google Scholar
  31. 31.
    LeDoux, J.: Synaptic Self: How Our Brains Become Who We Are. Viking Penguin, New York (2002)Google Scholar
  32. 32.
    Fiorini, R.A., Santacroce, G.F.: Economic competitivity in healthcare safety management by biomedical cybernetics ALS. In: 2013 Proceedings International Symposium, The Economic Crisis: Time for a Paradigm Shift - Towards a Systems Approach, pp. 24–25. Universitat de València, Valencia (2013)Google Scholar
  33. 33.
    Nicolescu, B.: Levels of complexity and levels of reality. In: Pullman, B. (ed.) Proceedings of the Plenary Session of the Pontifical Academy of Sciences on the Emergence of Complexity in Mathematics, Physics, Chemistry, and Biology. Casina Pio IV, Vatican, Pontifical Academy of Sciences, Vatican City, 27–31 October 1992. Princeton University Press, Princeton (1992)Google Scholar
  34. 34.
    Fiorini, R.A.: Evolutive information in the anthropocene era. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Philosophy and Methodology of Information, Part 2. Methodology of Information, pp. 201–261. World Scientific, Singapore (2019)CrossRefGoogle Scholar
  35. 35.
    Fiorini, R.A.: From epistemic uncertainty quantification to ontological uncertainty management for system safety and security. In: Proceedings of the IEEE 1st International Forum on Research and Technologies for Society and Industry: Leveraging a Better Tomorrow, Torino, Italy, 16–18 September 2015, pp. 312–319. IEEE Press, Torino (2015)Google Scholar
  36. 36.
    Fiorini, R.A.: Embracing the unknown in intelligent systems. In: Proceedings of the 18th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems, MAMETICS 2016, Venice, Italy, 29–31 January 2016. WSEAS Press, Venice (2016)Google Scholar
  37. 37.
    Einstein, A.: Über die elektromagnetischen Grundgleichungen für bewegte Körper. Ann. der Phys. 331, 532–540 (1908)CrossRefGoogle Scholar
  38. 38.
    Hestenes, D.: Space-Time Algebra. Gordon and Breach, New York (1966)zbMATHGoogle Scholar
  39. 39.
    Cassidy, D.C.: Uncertainty: The Life and Science of Werner Heisenberg. W.H. Freeman and Company, New York (1992)Google Scholar
  40. 40.
    Fiorini, R.A.: Computerized tomography noise reduction by CICT optimized exponential cyclic sequences (OECS) co-domain. Fundam. Inform. 141, 115–134 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Fiorini, R.A., Laguteta, G.: Discrete tomography data footprint reduction by information conservation. Fundam. Inform. 125(3–4), 261–272 (2013)MathSciNetGoogle Scholar
  42. 42.
    Laszlo, E.: Science and the Akashic Field: An Integral Theory of Everything. Amazon Media EU S.à r.l. (2010)Google Scholar
  43. 43.
    Laszlo, E., Tobias, M.: The Tuscany Dialogues: The Earth, Our Future, and the Scope of Human Consciousness. SelectBooks, Incorporated, New York (2018)Google Scholar
  44. 44.
    Di Corpo, U., Vannini, A.: Syntropy: The Spirit of Love. ICRL Press, Princeton (2015)Google Scholar
  45. 45.
    Bono, I., Del Giudice, E., Gamberale, L., Henry, M.: Emergence of the coherent structure of liquid water. Water 4(3), 510–532 (2012). Scholar
  46. 46.
    Preparata, G.: QED Coherence in Matter. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  47. 47.
    Del Giudice, E., Vitiello, G.: Role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions. Phys. Rev. A 74(2), 1–9 (2006). Article ID 022105Google Scholar
  48. 48.
    Lamb, W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72(3), 241–243 (1947)CrossRefGoogle Scholar
  49. 49.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akademie VanWetenschappen B 51, 793–796 (1948)zbMATHGoogle Scholar
  50. 50.
    Gurwitsch, A.A.: A historical review of the problem of mitogenetic radiation. Experientia 44, 545–550 (1988)CrossRefGoogle Scholar
  51. 51.
    Beloussov, L.V., Opitz, J.M., Gilbert, S.F.: Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int. J. Dev. Biol. 41, 771–779 (1997)Google Scholar
  52. 52.
    Fiorini, R.A.: Strumentazione Biomedica: Sistemi di Supporto Attivo. CUSL, Collana Scientifica, Milano (1994)Google Scholar
  53. 53.
    De Giacomo, P., Fiorini, R.A.: Creativity mind. Amazon (2019)Google Scholar
  54. 54.
    Fiorini, R.A.: From autonomous systems to symbiotic system science. In: Soda, P., et al. (eds.) Proceedings of the IEEE ICCI*CC 2019, 18th International Conference on Cognitive Informatics and Cognitive Computing, pp. 254–260. IEEE Press, New York (2019)Google Scholar
  55. 55.
    Fiorini, R.A.: Arbitrary multiscale explainable decision-making for symbiotic autonomous systems. Keynote speech. In: IEEE ICCI*CC 2019, 18th International Conference on Cognitive Informatics and Cognitive Computing. Politecnico di Milano, Milano, Italy, 23–25 July 2019, p. 6. IEEE Press, New York (2019)Google Scholar
  56. 56.
    Wang, Y., et al.: On autonomous systems: from reflexive, imperative and adaptive intelligence to autonomous and cognitive intelligence. In: Soda, P., et al. (eds.) Proceedings of the IEEE ICCI*CC 2019, 18th International Conference on Cognitive Informatics and Cognitive Computing, pp. 7–12. IEEE Press, New York (2019)Google Scholar
  57. 57.
    Lützen, J.: Joseph Liouville 1809–1882 – Master of Pure and Applied Mathematics. Springer, Heidelberg (1990). Scholar
  58. 58.
    Taleb, N.N., Goldstein, D.G.: The problem is beyond psychology: the real world is more random than regression analyses. Int. J. Forecast. 28(3), 715–716 (2012)CrossRefGoogle Scholar
  59. 59.
    Taleb, N.N.: Silent Risk: Lectures on Probability, vol. 1, January 2015.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.DEIBPolitecnico di Milano UniversityMilanItaly

Personalised recommendations