Advertisement

Advances in Plant–Microbe-Based Remediation Approaches for Environmental Cleanup

  • Sanjeev Kumar
  • Nisha Kumari
  • Susmita Karmakar
  • Ankit
  • Ritu SinghEmail author
  • Monalisha Behera
  • Anita Rani
  • Narendra Kumar
Chapter
  • 34 Downloads
Part of the Microorganisms for Sustainability book series (MICRO, volume 18)

Abstract

In the present era, one of the most concerning issues is environmental contamination which is endangering human health and the ecosystem, thus the identification and proper implementation of suitable technologies for remediation of contaminated sites is a prerequisite for sustainable development. In this context, several methods have been developed for the mitigation of the adverse impacts of toxic/hazardous contaminants. In the past decade, lot of research have been focused over improving the performance of established remedial technologies with the objective of eliminating the drawbacks and reducing the contaminant concentration to acceptable limits. Plant–microbe interaction has not been extensively studied in agriculture field only but another area in which the partnerships of plants and microbes have been explored is environmental cleanup. Plant–microbe interaction has been found to be a promising approach for in situ remediation of various organic/inorganic pollutants. It offers several ecological and cost-associated benefits. Plant–microbe-assisted phytoremediation could be improved further through genetically modified plants and microbes. The present chapter reviews the role of plant–microbe partnership in removal/detoxification/degradation of different category of contaminants. Additionally, the advancements made in microbe-assisted phytoremediation through the use of transgenic recombinants and integrated nanotechnology are also discussed.

Keywords

Plant–microbe partnership Remediation Transgenic plants Phytoremediation 

References

  1. Abhilash PC, Singh B, Srivastava P, Schaeffer A, Singh N (2013) Remediation of lindane by Jatropha curcas L: utilization of multipurpose species for rhizoremediation. Biomass Bioenergy 51:189–193CrossRefGoogle Scholar
  2. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224CrossRefGoogle Scholar
  3. Agnihotri A, Seth CS (2019) Transgenic Brassicaceae: a promising approach for phytoremediation of heavy metals. In: Transgenic plant technology for remediation of toxic metals and metalloids. Academic. pp 239–255CrossRefGoogle Scholar
  4. Aken BV, Correa AP, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776CrossRefGoogle Scholar
  5. Alshawabkeh AN (2009) Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol 44(10):2171–2187CrossRefGoogle Scholar
  6. Anoduadi CO, Okenwa LB, Okieimen FE, Tyowua AT, Uwumarongie-Ilori EG (2009) Metal immobilization in CCA contaminated soil using laterite and termite mound soil: evaluation by chemical fractionation. Niger J Appl Sci 27:77–87Google Scholar
  7. Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24(5):4322–4336CrossRefGoogle Scholar
  8. Ashraf S, Ali Q, Ahmad Z, Ashraf S, Asghar N (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727CrossRefGoogle Scholar
  9. Asquith EA, Geary P (2011) Comparative bioremediation of petroleum hydrocarbon-contaminated soil by biostimulation, bioaugmentation and surfactant addition. In: 4th international contaminated site remediation conference, Clean up. Adelaide. pp 261–262Google Scholar
  10. ATSDR (2012) Agency for Toxic Substance and Disease Registry, U.S. toxicological profile for cadmium. Department of Health and Humans Services, Public Health Service, Centers for Disease Control, AtlantaGoogle Scholar
  11. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180CrossRefGoogle Scholar
  12. Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32(155):164Google Scholar
  13. Banuelos G, Leduc DL, Pilon-Smits EA, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced the potential for selenium phytoremediation under field conditions. Environ Sci Technol 41(2):599–605CrossRefGoogle Scholar
  14. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588CrossRefGoogle Scholar
  15. Bassam M, Battikhi MN (2005) Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. J Hazard Mater 120:127–134CrossRefGoogle Scholar
  16. Batty LC, Dolan C (2013) The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit Rev Environ Sci Technol 43(3):217–259CrossRefGoogle Scholar
  17. Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology, it’s applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22Google Scholar
  18. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120CrossRefGoogle Scholar
  19. Bhatia D, Kumar MD (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6(4):72–79Google Scholar
  20. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Liu JR (2011) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Cult 105(1):85–91CrossRefGoogle Scholar
  21. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3(9):359–362CrossRefGoogle Scholar
  22. Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341CrossRefGoogle Scholar
  23. Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836CrossRefGoogle Scholar
  24. Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12(1):34–48CrossRefGoogle Scholar
  25. Chen Y, Xu W, Shen H, Yan H, Xu W, He Z (2013) Engineering arsenic tolerance and hyper accumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47(16):9355–9362CrossRefGoogle Scholar
  26. Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in arabidopsis. Plant Physiol 171(1):707–719CrossRefGoogle Scholar
  27. Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39(24):9377–9390CrossRefGoogle Scholar
  28. Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017) Distillery wastewater: a major source of environmental pollution and it’s biological treatment for environmental safety. In: Singh R, Kumar S (eds) Green technology and environmental sustainability. Springer International, Cham, pp 409–435CrossRefGoogle Scholar
  29. Collins C, Laturnus F, Nepovim A (2002) Remediation of BTEX and trichloroethene. Environ Sci Pollut Res 9:86–94CrossRefGoogle Scholar
  30. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125CrossRefGoogle Scholar
  31. Dadrasnia A, Shahsavari N, Emenike CU (2013) Remediation of contaminated sites.  https://doi.org/10.5772/51591Google Scholar
  32. Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870CrossRefGoogle Scholar
  33. Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22(23):18333–18344CrossRefGoogle Scholar
  34. Ding L, Li J, Liu W, Zuo Q, Liang S (2017) Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of ryegrass for phytoremediation in lead-polluted soil. Int J Environ Res Public Health 14(5):532CrossRefGoogle Scholar
  35. Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci 97(12):6287–6291CrossRefGoogle Scholar
  36. Douchkov D, Gryczka C, Stephan U, Hell R, Baumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374CrossRefGoogle Scholar
  37. Dzantor EK (2007) Phytoremediation: the state of rhizosphere “engineering” for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232CrossRefGoogle Scholar
  38. El-Kassas HY, Aly-Eldeen MA, Gharib SM (2016) Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin 35(8):89–98CrossRefGoogle Scholar
  39. El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597CrossRefGoogle Scholar
  40. Evangelou VP (1998) Environmental soil and water chemistry: principles and applications. Wiley-Inderscience, New YorkGoogle Scholar
  41. Ezeji EU, Anyadoh SO, Ibekwe VI (2007) Clean-up of crude oil contaminated soil. Terr Aquat Environ Toxicol 1(2):54–59Google Scholar
  42. Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185CrossRefGoogle Scholar
  43. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310CrossRefGoogle Scholar
  44. Ghavri SV, Kumar S, Bauddh K, Singh RP (2013) Enrichment coefficient and translocation factors of Fe and Cu in weeds growing on Sandila Industrial Area, India. Geophytology 43(2):153–161Google Scholar
  45. Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Xue W (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308–11316CrossRefGoogle Scholar
  46. Grispen VM, Hakvoort HW, Bliek T, Verkleij JA, Schat H (2011) Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ Exp Bot 72(1):71–76CrossRefGoogle Scholar
  47. He S, Li Y, Guo H, Lu L, Yang C (2019) Combined effect of ryegrass and Hyphomicrobium sp. GHH on the remediation of EE2-Cd co-contaminated soil. J Soils Sediments.  https://doi.org/10.1007/s11368-019-02358-8CrossRefGoogle Scholar
  48. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223(4635):496–498CrossRefGoogle Scholar
  49. Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G (2009) Expressing a bacterial mercuric ion binding protein in the plant for phytoremediation of heavy metals. J Hazard Mater 161(2–3):920–925CrossRefGoogle Scholar
  50. Hsu TS, Bartha R (1979) Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Appl Environ Microbiol 37:36–41CrossRefGoogle Scholar
  51. Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Hu Z (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237CrossRefGoogle Scholar
  52. Hussain I, Alet G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628–629:1582–1599CrossRefGoogle Scholar
  53. Ibáñez SG, Merini LJ, Barros GG, Mediana MI, Agostini E (2014) Vicia sativa–rhizospheric bacteria interactions to improve phenol remediation. Int J Environ Sci Technol 11:1679CrossRefGoogle Scholar
  54. Jabeen H, Iqbal S, Ahmad F, Afzal M, Firdous S (2016) Enhanced remediation of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial endophyte Mezorhizobium sp. HN3. Int J Phytoremediation 18:126–133CrossRefGoogle Scholar
  55. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182CrossRefGoogle Scholar
  56. Jiamjitrpanich W, Parkpian P, Polprasert C, Kosanlavit R (2013) Trinitrotoluene and its metabolites in shoots and roots of Panicum maximum in nano-phytoremediation. Int J Environ Sci Dev Monit 4(1):7CrossRefGoogle Scholar
  57. Jin Y, Liu W, Li X, Shen S, Liang S, Liu C, Shan L (2016) Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol Eng 95:25–29CrossRefGoogle Scholar
  58. Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78(9):3504–3507CrossRefGoogle Scholar
  59. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20(2):225–230CrossRefGoogle Scholar
  60. Khalid S, Sahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182(Part B):247–268CrossRefGoogle Scholar
  61. Khan N, Bano A (2016) Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation 18(3):211–221CrossRefGoogle Scholar
  62. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E et al (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46(11):1809–1818CrossRefGoogle Scholar
  63. Kuang Y, Du J, Zhou R, Chen Z, Megharaj M, Naidu R (2015) Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu (II) and monochlorobenzene. J Colloid Interface Sci 447:85–91CrossRefGoogle Scholar
  64. Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC (2013) Extractability and phytotoxicity of heavy metals present in petrochemical industry sludge. Clean Technol Environ Policy 15(6):1033–1039CrossRefGoogle Scholar
  65. Kumar N, Kumar S, Bauddh K, Dwivedi N, Singh DP, Barman SC (2014) Toxicity assessment of effluent from flash light manufacturing industry by bioassays tests in methi (Trigonella foenumgracum). J Environ Biol 35:1107–1113Google Scholar
  66. Kumar N, Kumar S, Bauddh K, Dwivedi N, Singh DP, Barman SC (2015) Toxicity assessment and accumulation of metals in Raphanus sativus L. irrigated with battery manufacturing industry effluent. Int J Veg Sci 21(4):373–385CrossRefGoogle Scholar
  67. Kumar D, Kumar S, Kumar N (2017a) Adaptation strategies of plants against common inorganic pollutants and metals. In: Shukla, V, Kumar S, Kumar N (eds) Plant adaptations strategies in changing environment. Springer Publication, pp 315–328Google Scholar
  68. Kumar D, Kumar S, Kumar N (2017b) Common weeds as potential tools for in situ phytoremediation and eco-restoration of industrially polluted sites. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Taylor and Francis Group, New York, pp 271–284Google Scholar
  69. Kumar N, Kulsoom M, Shukla V, Kumar D, Priyanka, Kumar S, Tiwari J, Dwivedi N (2018a) Profiling of heavy metal and pesticide residues in medicinal plants. Environ Sci Pollut Res 25(29):29505–29510.  https://doi.org/10.1007/s11356-018-2993-zCrossRefGoogle Scholar
  70. Kumar S, Kumar M, Singh R, Kumar D, Prasad R, Ankit, Rani A, Kumar N (2018b) Plant microbe symbiosis: a synergistic approach for heavy metal bioremediation. In: Recent advances in environmental management. CRC Press, Boca Raton, pp 293–309Google Scholar
  71. Kumar S, Singh R, Behera M, Kumar V, Sweta RA, Kumar N, Bauddh K (2019) Restoration of pesticide contaminated sites through plants. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier Publication, Amsterdam, pp 313–327CrossRefGoogle Scholar
  72. Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211CrossRefGoogle Scholar
  73. Li A, Cai R, Cui D, Qiu T, Pang C, Yang J, Ma F, Ren N (2013) Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. J Environ Sci (China) 25:2281–2290CrossRefGoogle Scholar
  74. Liang J, Yang Z, Tang L, Zeng G, Yu M, Li X, Luo Y (2017) Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181:281–288.  https://doi.org/10.1016/chemosphere.2017.04.081CrossRefGoogle Scholar
  75. Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  76. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224CrossRefGoogle Scholar
  77. Liu Q, Luo L, Wang X, Shen Z, Zheng L (2017) Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci 18(2):209CrossRefGoogle Scholar
  78. Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease the production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367(1–2):507–519CrossRefGoogle Scholar
  79. Majumder A, Bhattacharyya K, Bhattacharyya S, Kole SC (2013) Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Sci Total Environ 46:1006–1014CrossRefGoogle Scholar
  80. Männistö MK, Tiirola MA, Puhakka JA (2001) Degradation of 2, 3, 4, 6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12:291–301CrossRefGoogle Scholar
  81. Mauriz E, Calle A, Montoya A, Lechuga LM (2006) Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 69:359–364CrossRefGoogle Scholar
  82. Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37:955–963CrossRefGoogle Scholar
  83. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706CrossRefGoogle Scholar
  84. Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P (2018) Heavy metal contamination: an alarming threat to environment and human health. In: Sobti RS, Arora NK, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer Nature Singapore Pte Ltd, Singapore, pp 103–125Google Scholar
  85. Mishra S, Saratale GD, Ferreira LF, Bharagava RN (2019) Plant-microbe interaction: an Ecofriendly approach for the remediation of metal contaminated environments. In: Choudhury I, Hashm S (eds) Reference Module in Materials Science and Materials Engineering. Elsevier, Academic. (in press).  https://doi.org/10.1016/B978-0-12-803581-8.11508-5CrossRefGoogle Scholar
  86. Mojiri A, Aziz HA, Zahed MA, Aziz SQ, Selamat MRB (2013) Phytoremediation of heavy metals from urban waste leachate by southern cattail (Typha domingensis). Int J Sci Res Environ Sci 1(4):63–70Google Scholar
  87. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153CrossRefGoogle Scholar
  88. Navarro-Torre S, Barcia-Piedras JM, Caviedes MA, Pajuelo E, Redondo-Gómez S, Rodríguez-Llorente ID, Mateos-Naranjo E (2017) Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. Mar Pollut Bull 117:340–347CrossRefGoogle Scholar
  89. Nguyen PM, Afzal M, Ullah I, Shahid N, Baqar M, Arslan M (2019) Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environ Sci Pollut Res Int 26(21):21109–21126CrossRefGoogle Scholar
  90. Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40(4):355–361CrossRefGoogle Scholar
  91. Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on the membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519CrossRefGoogle Scholar
  92. Oh K, Cao T, Li T, Cheng H (2014) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean Energy Technol 2(3):216–220CrossRefGoogle Scholar
  93. Paul MJ, Nuccio ML, Basu SS (2017) Are GM crops for yield and resilience possible? Trends Plant Sci 23(1):1016Google Scholar
  94. Pavel LV, Gavrilescu M (2008) Overview of ex situ decontamination techniques for soil cleanup. Environ Eng Manag 7:815–834CrossRefGoogle Scholar
  95. Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234CrossRefGoogle Scholar
  96. Pillai HP, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7:734–744CrossRefGoogle Scholar
  97. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  98. Pilon-Smits EAH, Quinn CF (2010) Selenium Metabolism in Plants. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Plant cell monographs, vol 17. Springer, Berlin, HeidelbergGoogle Scholar
  99. Pomponi M, Censi V, Di Girolamo V, De Paolis A, Di Toppi LS, Aromolo R (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd21 tolerance and accumulation but not translocation to the shoot. Planta 223(2):180–190CrossRefGoogle Scholar
  100. Reddi LN, Inyang HI (2000) Geoenvironmental engineering: principles and applications. Marcel Dekker Inc., New YorkCrossRefGoogle Scholar
  101. Ren J, Wang XP, Wang C, Gong P, Wang X, Ya T (2017) Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms. Environ Pollut 220:636–643CrossRefGoogle Scholar
  102. Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2015) Phytoremediation, soil remediation and plants. Elsevier Inc.  https://doi.org/10.1016/B978-0-12-799937-1.00004-8CrossRefGoogle Scholar
  103. Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Iwakami S, Yano M (2014) A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiol 166(3):1232–1240CrossRefGoogle Scholar
  104. Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6:83Google Scholar
  105. Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 249, pp 71–131Google Scholar
  106. Schütte G, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo VS, Ruohonen LM, Mertens M (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29(1):5CrossRefGoogle Scholar
  107. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077CrossRefGoogle Scholar
  108. Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72(2):131–139CrossRefGoogle Scholar
  109. Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer International Publishing, Cham, pp 1–25Google Scholar
  110. Sharma B, Dang AK, Shukla P (2019) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22CrossRefGoogle Scholar
  111. Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159CrossRefGoogle Scholar
  112. Singh AK, Chandra R (2019) Pollutants released from the pulp paper industry: aquatic toxicity and their health hazards. Aquat Toxicol 211:202–216CrossRefGoogle Scholar
  113. Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96CrossRefGoogle Scholar
  114. Singh R, Misra V (2016) Stabilization of zero-Valent Iron nanoparticles: role of polymers and surfactants. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, ChamGoogle Scholar
  115. Singh S, Sherkhane PD, Kale SP, Eapen S (2011) Expression of a human cytochrome P4502E1 in Nicotiana tabacum enhances tolerance and remediation of γ hexachlorocyclohexane. Nat Biotechnol 28(4):423–429Google Scholar
  116. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914CrossRefGoogle Scholar
  117. Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv, under As stress. IET Nanobiotechnol 11:650–655CrossRefGoogle Scholar
  118. Srivastav A et al (2018) Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In: Ansari A, Gill S, Gill R, Lanza RG, Newman L (eds) Phytoremediation. Springer, ChamGoogle Scholar
  119. Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D (2016) Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM 2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere 144:2392–2400CrossRefGoogle Scholar
  120. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658CrossRefGoogle Scholar
  121. Thijs S, Van Dillewijn P, Sillen W, Truyens S, Holtappels M, D’Haen J, Carleer R, Weyens N, Ameloot M, Ramos J-L, Vangronsveld J (2014) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385:15–36CrossRefGoogle Scholar
  122. Ucaroglu S, Talinli I (2012) Recovery and safer disposal of phosphate coating sludge by solidification/stabilization. J Environ Manag 105:131–137CrossRefGoogle Scholar
  123. U.S. Environmental Protection Agency (USEPA) (2004) Risk assessment guidance for superfund (Rags). Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. I. http://www.epa.gov/oswer/riskassessment/ragse
  124. Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26(5):225–227CrossRefGoogle Scholar
  125. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van Der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  126. Vasantharaj S, Sathiyavimal S, Senthilkumar P, LewisOscar F, Pugazhendhi A (2019) Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B Biol 192:74–82CrossRefGoogle Scholar
  127. Venkataramaiah N, Ramakrishna SV, Sreevathsa R (2011) Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress. Biologia 66(6):1060CrossRefGoogle Scholar
  128. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  129. Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369CrossRefGoogle Scholar
  130. Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J, Aguirre de Cárcer D, Oruezábal RI, Bolaños L, Macek T, Karlson U, Dowling DN, Martín M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694CrossRefGoogle Scholar
  131. Vitkova M, Puschenreiter M, Komarek M (2018) Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200:217–226CrossRefGoogle Scholar
  132. Wang Y, Xu M, Jin J, He S, Li M, Sun Y (2010) Concentrations and relationships between classes of persistent halogenated organic compounds in pooled human serum samples and air from Laizhou Bay, China. Sci Total Environ 482–483:276–282Google Scholar
  133. Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158(7):2422–2427CrossRefGoogle Scholar
  134. Wood (2002) Overview of remediation technology. Terra Resources, Ltd, Wolvernia, Palmer, 6 p. www.terrawash.com/twp2.htm
  135. Xiong T, Austruy A, Pierart A, Shahid M (2016) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci 46:16–27CrossRefGoogle Scholar
  136. Yadav A, Mishra S, Kaithwas G, Raj A, Bharagava RN (2016a) Organic pollutants and pathogenic bacteria in tannery wastewater and their removal strategies. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press (India) Pvt. Ltd, New Delhi, pp 104–130Google Scholar
  137. Yadav A, Raj A, Bharagava RN (2016b) Detection and characterization of a multidrug and multi-metal resistant Enterobacterium Pantoea sp. from tannery wastewater after secondary treatment process. Int J Plant Environ 1(2):37–41Google Scholar
  138. Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in the environment, their threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interaction and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, pp 128–141CrossRefGoogle Scholar
  139. Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298CrossRefGoogle Scholar
  140. Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN (2019) Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. Chemosphere 224:324–332CrossRefGoogle Scholar
  141. Yao Q, Yang R, Long L, Zhu H (2014) Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environ Exp Bot 108:63–70CrossRefGoogle Scholar
  142. Ying T, Wei C (2019) Soil microbiomes—a promising strategy for contaminated soil remediation: a review. Pedosphere 299(3):283–297Google Scholar
  143. Yousaf S, Afzal M, Anees M, Malik RN, Campisano A (2014) Ecology and functional potential of endophytes in bioremediation: a molecular perspective. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 301–320CrossRefGoogle Scholar
  144. Zhang Y, He Z, Wang H, Qi L, Liu G, Zhang X (2015) Applications of hollow nanomaterials in environmental remediation and monitoring: a review. Front Environ Sci Eng 9(5):770–783CrossRefGoogle Scholar
  145. Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z (2018) Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Front Plant Sci 9:107CrossRefGoogle Scholar
  146. Zhao C, Xie HJ, Xu J, Xu X, Zhang J, Hu Z, Liu C, Liang S, Wang Q, Wang J (2015) Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants. Sci Total Environ 505:633–639CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sanjeev Kumar
    • 1
  • Nisha Kumari
    • 2
  • Susmita Karmakar
    • 1
  • Ankit
    • 1
  • Ritu Singh
    • 2
    Email author
  • Monalisha Behera
    • 2
  • Anita Rani
    • 3
  • Narendra Kumar
    • 4
  1. 1.Department of Environmental SciencesCentral University of JharkhandRanchiIndia
  2. 2.Department of Environmental Science, School of Earth SciencesCentral University of RajasthanAjmerIndia
  3. 3.Department of BotanyDyal Singh College, University of DelhiNew DelhiIndia
  4. 4.Department of Environmental SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations