Advertisement

Classification of Subliminal Affective Priming Effect Based on AE and SVM

  • Yongqiang Yin
  • Bin HuEmail author
  • Tiantian Li
  • Xiangwei Zheng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1042)

Abstract

The study of the Subliminal Affective Priming Effect (SAPE) mainly uses event-related potential technology and mapping method. Many researches are only for the study of emotional classification, but there are few researches on the classification of the SAPE. That is, the SAPE is directly judged by the psychologist in most experiment. So, this paper designs a classifier based on Automatic Encoder (AE) and Support Vector Machine (SVM) for automatic recognition of SPAE. Initially, this paper collects EEG signal, and then extracts statistical features from EEG signal to form a data set. After that, the data set is dimension reduction by AE and then divided into training set and test set randomly. At last, the already designed model is trained with the training set and validated with the test set. In the experiment, we find that the designed classifier has the best performance compared with the classifiers based on BP neural network, Principal Component Analysis (PCA) and SVM. The experimental results show that the average classification accuracy is 95.31%. The classification results further indicate that the SAPE’s judgment is hopeful to reduce the labor with the machine.

Keywords

Subliminal Affective Priming Effect BP neural network Automatic Encoder Support vector machine 

References

  1. 1.
    Nie, D., Wang, X.W., Duan, R.N., Lv, B.L.: A survey on EEG based on emotion recognition. J. Chin. J. Biomed. Eng. 31(4), 595–606 (2012). https://doi.org/10.3969/j.issn.0258-8021.2012.04.018
  2. 2.
    Li, T.T., Lu, Y.: The subliminal affective priming effects of faces displaying various level of arousal: an ERP study. Neuroscience Lett. 583, 148–153 (2014).  https://doi.org/10.1016/j.neulet.2014.09.027CrossRefGoogle Scholar
  3. 3.
    Yi, J.Y., Zhong, M.T., Luo, Y.Z., Ling, Y., Yao, S.Q.: A study of subliminal affective priming with affective pictures. Chin. J. Clin. Psychol. 15(3), 304 (2007).  https://doi.org/10.16128/j.cnki.1005-3611.2007.03.030CrossRefGoogle Scholar
  4. 4.
    Takahashi, K.: Remarks on SVM-based emotion recognition from multi-modal bio-potential signals. In: 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759) (2004).  https://doi.org/10.1109/roman.2004.1374736
  5. 5.
    Liu, L., Chen, J., Xu, L.: Realization and application research of BP neural network based on MATLAB. J. Int. Seminar Future BioMed. Inform. Eng. 2008, 130–133 (2008).  https://doi.org/10.1109/fbie.2008.92CrossRefGoogle Scholar
  6. 6.
    Jin, H.L., Zhang, Z.H.: Research of movement imagery EEG based on hilbert-huang transform and BP neural network. Chin. J. Biomed. Eng. 2013(2), 249–253 (2013).  https://doi.org/10.7507/1001-5515.20130047CrossRefGoogle Scholar
  7. 7.
    Wang, J.: Analysis of motor imagery EEG based on the BP network. Tianjin Normal University (2012)Google Scholar
  8. 8.
    Yang, L.C., Li, J.L., Yao, Y.B., Wu, X.Q.: A P300 detection algorithm based on f-score feature selection and support vector machines. J. Biomed. Eng. 2008(1), 23–26 (2008).  https://doi.org/10.1142/S0217595908001626CrossRefGoogle Scholar
  9. 9.
    Zhang, K.X., Lu, K.H., Zhu, J.Y., Liu, X.S., Xie, L.F.: Predicting model of algal blooms based on BP neural network. Environ. Monit. China 28(3), 53–57 (2012).  https://doi.org/10.19316/j.issn.1002-6002.2012.03.012CrossRefGoogle Scholar
  10. 10.
    Guo, Z.M., Zhang, Z.Z., Pan, Y.X., Hua, Z.D., Feng, G.Y., He L.: Prediction of membrane protein types by using support vector machine. J. Shanghai Jiao tong Univ. 38(5) (2004).  https://doi.org/10.1016/s0960-0779(03)00420-xMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hagan, M.T., Beale, M., Beale, M.: Neural Network Design, pp. 8–10, PWS Publishing Co., Boston (1996). ISBN:0-534-94332-2Google Scholar
  12. 12.
    Cotter, N.E.: The stone-weierstrass theorem and its application to neural networks. IEEE Trans. Neural Netw. 1(4), 290–295 (1990).  https://doi.org/10.1109/72.80265MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ran, W.L.: Soft measring technique researoh appliedin wastewater BOD based on neural computing. Beijing University of Technology (2004)Google Scholar
  14. 14.
    Wei, A.: Design of a classifier based on the SVM algorithm. Electron. Sci. Technol. 28(4), 23 (2015).  https://doi.org/10.16180/j.cnki.issn1007-7820.2015.04.007CrossRefGoogle Scholar
  15. 15.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2011). https://doi.org/10.1145/1961189.1961199. http://www.csie.ntu.edu.tw/~cjlin/libsvmCrossRefGoogle Scholar
  16. 16.
    Li, K., Liu, P., Li, Y.J., Zhang, G.P., Huang, Y.H.: The parallel algorithms for LIBSVM parameter optimization based on Spark. J. Nanjing Univ. (Nat. Sci.) 52(2) (2016).  https://doi.org/10.13232/j.cnki.jnju.2016.02.016
  17. 17.
    Deng, J.F., Zhang, X.L.: Deep learning algorithm optimization based on combination of auto-encoders. J. Comput. Appl. 36(3), 697–702 (2016).  https://doi.org/10.1172/j.issn.1001-9081.2016.03.697CrossRefGoogle Scholar
  18. 18.
    Guan, J.Q., Yang, B.H., Ma, S.W., Yuan, L.: Classification of motor imagery EEG based on PCA and SVM. Beijing Biomed. Eng. 29(3), 261–265 (2010).  https://doi.org/10.3969/j.jssn.1002-3208.2010.03.09CrossRefGoogle Scholar
  19. 19.
    Modai, I., Ritsner, M., Kurs, R., Mendel, S., Ponizovsky, A.: Validation of the computerized suicide risk scale–a backpropagation neural network instrument (CSRS-BP). Eur. Psychiatry 17(2), 75–81 (2002).  https://doi.org/10.1016/s0924-9338(02)00631-4CrossRefGoogle Scholar
  20. 20.
    Kandaswamy, K., Pugalenthi, G., Suganthan, P., Gangal, R.: SVMCRYS: an SVM approach for the prediction of protein crystallization propensity from protein sequence. Protein Peptide Lett. 17(4), 423–430 (2010).  https://doi.org/10.2174/092986610790963726CrossRefGoogle Scholar
  21. 21.
    Dannlowski, U., Kersting, A., Lalee-Mentzel, J., Donges, U.S., Arolt, V., Suslow, T.: Subliminal affective priming in clinical depression and comorbid anxiety: a longitudinal investigation. Psychiatry Res. 143(1), 63–75 (2006).  https://doi.org/10.1016/j.psychres.2005.08.022CrossRefGoogle Scholar
  22. 22.
    Zhang, J.D., Qin, G.H., Cui, Y.: An EEG signal system based on FastICA and SVM. J. Comput. Res. Dev. 45(z1), 255–258 (2008)Google Scholar
  23. 23.
    Murphy, S.T., Zajonc, R.B.: Affect, cognition, and awareness: affective priming with optimal and suboptimal stimulus exposures. J Pers. Soc. Psychol. 64(5), 723 (1993).  https://doi.org/10.1037//0022-3514.64.5.723CrossRefGoogle Scholar
  24. 24.
    Jiang, Z.Q., Yang, L.Z., Liu, Y.: Study on adults’ subliminal affective priming effect. J. Liaoning Normal Univ. (Soc. Sci. Edn.) 28(4), 48–50 (2005).  https://doi.org/10.3969/j.issn.1000-1751.2005.04.015CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yongqiang Yin
    • 1
    • 2
  • Bin Hu
    • 1
    • 2
    Email author
  • Tiantian Li
    • 3
  • Xiangwei Zheng
    • 1
    • 2
  1. 1.School of Information Science and EngineeringShandong Normal UniversityJinanChina
  2. 2.Shandong Provincial Key Laboratory for Distributed Computer Software Novel TechnologyJinanChina
  3. 3.Faculty of EducationShandong Normal UniversityJinanChina

Personalised recommendations