A Local Dynamic Community Detection Algorithm Based on Node Contribution

  • Kun Guo
  • Ling He
  • Jiangsheng Huang
  • Yuzhong ChenEmail author
  • Bing Lin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1042)


The existence of communities in various complex networks is ubiquitous in all aspects of people’s living. Hence, it is crucial to uncover communities accurately, which is one of the hottest research areas in the field of network analysis. Particularly, complex networks are usually in continuous change so that it is more realistic to uncover dynamic communities. In this study, an algorithm based on node contribution for uncovering dynamic communities is proposed. Firstly, the seed nodes are selected via node local fitness in the network, thus guaranteeing that the selected seeds are central nodes of communities. Secondly, a static algorithm is used to obtain communities in initial snapshot of the network. Finally, node contribution is proposed to incrementally uncover communities in non-initial snapshots of the network. The experimental results reveal that our method outperforms all other comparison algorithms in both artificial and real datasets.


Complex network Dynamic community detection Node local fitness Node contribution 



This work is partly supported by the National Natural Science Foundation of China under Grant No. 61300104, No. 61300103 and No. 61672159, the Fujian Province High School Science Fund for Distinguished Young Scholars under Grant No. JA12016, the Fujian Natural Science Funds for Distinguished Young Scholar under Grant No. 2015J06014, the Fujian Industry-Academy Cooperation Project under Grant No. 2018H6010 and No. 2017H6008, and Haixi Government Big Data Application Cooperative Innovation Center.


  1. 1.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38(2), 321–330 (2004)CrossRefGoogle Scholar
  2. 2.
    Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mitra, B., Tabourier, L., Roth, C.: Intrinsically dynamic network communities. Comput. Netw. 56(3), 1041–1053 (2012)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 554–560. ACM, Philadelphia (2006)Google Scholar
  5. 5.
    Li, X., Wu, B., Guo, Q., et al.: Dynamic community detection algorithm based on incremental identification. In: 15th IEEE International Conference on Data Mining Workshop (ICDMW), pp. 900–907. IEEE, Atlantic City (2015)Google Scholar
  6. 6.
    Zakrzewska, A., Bader, D.A.: A dynamic algorithm for local community detection in graphs. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 559–564. ACM, Paris (2015)Google Scholar
  7. 7.
    Hu, Y., Yang, B., Lv, C.: A local dynamic method for tracking communities and their evolution in dynamic networks. Knowl.-Based Syst. 110, 176–190 (2016)CrossRefGoogle Scholar
  8. 8.
    DiTursi, D.J., Ghosh, G., Bogdanov, P.: Local community detection in dynamic networks. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 847–852. IEEE, New Orleans (2017)Google Scholar
  9. 9.
    Javadi, S.H.S., Gharani, P., Khadivi, S.: Detecting community structure in dynamic social networks using the concept of leadership. In: Amini, M.H., Boroojeni, K.G., Iyengar, S.S., Pardalos, P.M., Blaabjerg, F., Madni, A.M. (eds.) Sustainable Interdependent Networks. SSDC, vol. 145, pp. 97–118. Springer, Cham (2018). Scholar
  10. 10.
    Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)CrossRefGoogle Scholar
  11. 11.
    Klimt, B., Yang, Y.: The Enron Corpus: A New Dataset for Email Classification Research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). Scholar
  12. 12.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM, Chicago (2005)Google Scholar
  13. 13.
    Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183. IEEE, Odense (2010)Google Scholar
  14. 14.
    Nguyen, N.P., Dinh, T.N., Tokala, S., et al.: Overlapping communities in dynamic networks: their detection and mobile applications. In: Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, pp. 85–96. ACM, Las Vegas (2011)Google Scholar
  15. 15.
    Shang, J., Liu, L., Xie, F., et al.: A real-time detecting algorithm for tracking community structure of dynamic networks. arXiv preprint arXiv:1407.2683 (2014)
  16. 16.
    Nguyen, N.P., Dinh, T.N., Shen, Y., et al.: Dynamic social community detection and its applications. PLoS ONE 9(4), e91431 (2014)CrossRefGoogle Scholar
  17. 17.
    Shen, H., Cheng, X., Cai, K., et al.: Detect overlapping and hierarchical community structure in networks. Phys. A: Stat. Mech. Appl. 388(8), 1706–1712 (2009)CrossRefGoogle Scholar
  18. 18.
    Danon, L., Diaz-Guilera, A., Duch, J., et al.: Comparing community structure identification. J. Stat. Mech: Theory Exp. 2005(09), P09008 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kun Guo
    • 1
    • 2
    • 3
  • Ling He
    • 1
    • 2
    • 3
  • Jiangsheng Huang
    • 4
  • Yuzhong Chen
    • 1
    • 2
    • 3
    Email author
  • Bing Lin
    • 5
  1. 1.College of Mathematics and Computer SciencesFuzhou UniversityFuzhouChina
  2. 2.Fujian Provincial Key Laboratory of Network Computing and Intelligent Information ProcessingFuzhouChina
  3. 3.Key Laboratory of Spatial Data Mining and Information SharingMinistry of EducationFuzhouChina
  4. 4.Power Science and Technology Corporation State Grid Information and Telecommunication GroupFuzhouChina
  5. 5.College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsFujian Normal UniversityFuzhouChina

Personalised recommendations