Advertisement

Adaptive Graph Planning Protocol: An Adaption Approach to Collaboration in Open Multi-agent Systems

  • Jingzhi GuoEmail author
  • Wei Liu
  • Longlong Xu
  • Shengbin Xie
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1042)

Abstract

The adaptive system requires each agent to provide effective adaptive scheme in runtime according to dynamic changes in the environment. This paper offers an Adaptive Graph Planning Protocol (AGPP) that uses the Goal-Capability-Commitment (GCC) meta-model to dynamically reconstruct. The method uses the concept of capability to represent the executable capabilities possessed by the Agent, and introduces the concept of context state to represent the dynamic environment in the adaptive system. The adaptive graph planning protocol generation method is optimized by calculating the semantic matching degree of the context state. To evaluate the effectiveness of our approach, we provide an experimental scheme based on intelligent robot parking system (IRPS). This scheme verifies the execution time efficiency of this method and the adaptive efficiency of offline in case of emergency.

Keywords

Open multi-agent system Graph planning Adaptive collaboration Goal-Capability-Commitment model 

Notes

Acknowledgment

Project supported by the National Natural Science Foundation of China under Grant (No. 61502355), supported by Scientific Research Project of Education Department of Hubei Province (No. Q20181508), supported by Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2018203).

References

  1. 1.
    Gottifredi, S., Tamargo, L.H., García, A.J., Simari, G.R.: Arguing about informant credibility in open multi-agent systems. Artif. Intell. 259, 91–109 (2018).  https://doi.org/10.1016/j.artint.2018.03.001MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wang, D.D., Zhou, Q.H., Zhu, W.: Adaptive event-based consensus of multi-agent systems with general linear dynamics. J. Syst. Sci. Complexity 31(1), 120–129 (2018).  https://doi.org/10.1007/s11424-018-7360-0MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albrecht, S.V., Stone, P.: Autonomous agents modelling other agents: a comprehensive survey and open problems. Artif. Intell. 258, 66–95 (2018).  https://doi.org/10.1016/j.artint.2018.01.002MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using architecture models for runtime adaptability. IEEE Softw. 23(2), 62–70 (2006).  https://doi.org/10.1109/MS.2006.61CrossRefGoogle Scholar
  5. 5.
    Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27 (2009).  https://doi.org/10.1109/mc.2009.326CrossRefGoogle Scholar
  6. 6.
    Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@run.time to support dynamic adaptation. Computer, 42(10), 44–51 (2009).  https://doi.org/10.1109/mc.2009.327CrossRefGoogle Scholar
  7. 7.
    Liu, W., Li, S., Wang, J.: Goal-capability-commitment based context-aware collaborative adaptive diagnosis and compensation. In: Cong Vinh, P., Ha Huy Cuong, N., Vassev, E. (eds.) ICCASA/ICTCC -2017. LNICST, vol. 217, pp. 79–89. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77818-1_8CrossRefGoogle Scholar
  8. 8.
    Günay, A., Winikoff, M., Yolum, P.: Dynamically generated commitment protocols in open systems. Auton. Agent. Multi-Agent Syst. 29(2), 192–229 (2015).  https://doi.org/10.1007/s10458-014-9251-7CrossRefGoogle Scholar
  9. 9.
    Krupitzer, C., Roth, F.M., VanSyckel, S.: A survey on engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–206 (2015).  https://doi.org/10.1016/j.pmcj.2014.09.009CrossRefGoogle Scholar
  10. 10.
    Zhao, T.Q., Zhao, H.Y., Zhang, W., Jin, Z.: Survey of model-based self-adaptation methods. J. Softw. 29(1), 23–41 (2018)Google Scholar
  11. 11.
    Liu, H.Z., Bao, H., Xu, D.: Concept vector for similarity measurement based on hierarchical domain structure. Comput. Inform. 30(5), 881–900 (2012)zbMATHGoogle Scholar
  12. 12.
    Farias, T.M.D., Roxin, A., Nicolle, C.: SWRL rule-selection methodology for ontology interoperability. Data Knowl. Eng. 105, 53–72 (2016).  https://doi.org/10.1016/j.datak.2015.09.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jingzhi Guo
    • 1
    • 2
    Email author
  • Wei Liu
    • 1
    • 2
  • Longlong Xu
    • 1
    • 2
  • Shengbin Xie
    • 3
  1. 1.School of Computer Science and EngineeringWuhan Institute of TechnologyWuhanChina
  2. 2.Hubei Province Key Laboratory of Intelligent RobotWuhanChina
  3. 3.Enshi No. 1 Senior Middle School of HubeiEnshiChina

Personalised recommendations