Advertisement

Biological Host Response: A Paradigm and Strategy to Overcome Biotic Stress Caused by Powdery Mildew Causal Agents in Plants

  • Sheetal M. Bhosle
  • Nitinkumar Marathe
  • Ragiba MakandarEmail author
Chapter
  • 51 Downloads

Abstract

Powdery mildew disease is one of the most important diseases of agriculturally and economically important crop plants and tree species. Powdery mildew causing fungi are a complex group of fungi which can infect a broad range of host species which include agricultural crops, fruit trees, and ornamental plants. The biological hosts for powdery mildew infection are important sources for food including cereals, millets, legumes, pulses, vegetables, fruits, beverages, and ornamentals with esthetic value. Considering the importance of powdery mildew disease and its impact on crop productivity and quality of the produce, it necessitates to understand the mode of infection, molecular mechanism underlying its pathogenicity, and also how plants respond to the infection to devise strategies to curb the pathogens. An attempt is made to appraise previous studies reported on powdery mildew causing fungi and elucidate mechanisms to target the pathogens effectively.

Keywords

Powdery mildew Pathogenecity Virulence Garden pea Hypersensitive responses 

Notes

Acknowledgments

The work was supported by Department of Science and Technology (DST; SR/SO/BB02/2010), Department of Biotechnology (DBT; BT/PR1264/PBD/16/848/2009), Universities with Potential for Excellence (UPE Phase II; UH/UGC/UPE Phase-2/Interface Studies/research projects/R-29). Facilities at UoH which include DBT-CREBB, DST-FIST, UGC-SAP, CIL, and Plant Culture Facility, Plant Sciences Facility at School of Life sciences are also acknowledged. Also, the authors acknowledge the financial support in the form of fellowship to SMB (DST-INSPIRE).

Conflict of interest: There is no conflict of interest.

References

  1. Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9(3):341–356CrossRefPubMedGoogle Scholar
  2. Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant Microbe Interact 12:1031–1043CrossRefPubMedGoogle Scholar
  3. Ahmed AA, Pedersen C, Schultz-Larsen T, Kwaaitaal M, Jørgensen HJL, Thordal-Christensen H (2015) The barley powdery mildew candidate secreted effector protein CSEP0105 inhibits the chaperone activity of a small heat shock protein. Plant Physiol 168(1):321–333CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahmed AA, McLellan H, Aguilar GB, Hein I, Thordal-Christensen H, Birch PR (2016a) Engineering barriers to infection by undermining pathogen effector function or by gaining effector recognition. In: Collinge DB (ed) Biotechnology for plant disease control. Wiley, New York, pp 23–50Google Scholar
  5. Ahmed AA, Pedersen C, Thordal-Christensen H (2016b) The barley powdery mildew effector candidates CSEP0081 and CSEP0254 promote fungal infection success. PLoS one 11(6):e0157586CrossRefPubMedPubMedCentralGoogle Scholar
  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefPubMedPubMedCentralGoogle Scholar
  7. Appiano M, Pavan S, Catalano D, Zheng Z, Bracuto V, Lotti C, Visser RG, Ricciardi L, Bai Y (2015) Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Transgenic Res 24(5):847–858CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnaud G (1921) Study on parasite fungi (Parodiellinaceae), including Erysiphacea (in French). Ann Epiphyt 7:1–115Google Scholar
  9. Arthur JC, Lich JD, Aziz RK, Kotb M, Ting JPY (2007) Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-κB-inducing kinase. J Immunol 17(9):6291–6296CrossRefGoogle Scholar
  10. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396CrossRefPubMedPubMedCentralGoogle Scholar
  11. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in chloroplasts. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photo inhibition. Elsevier, Amsterdam, pp 227–287Google Scholar
  12. Aust HJ, Hoyningen-Huene J (1986) Microclimate in relation to powdery mildew epidemics. Annu Rev Phytopathol 24:491–510CrossRefGoogle Scholar
  13. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 2(1):30–39CrossRefGoogle Scholar
  14. Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488CrossRefGoogle Scholar
  15. Belanger RR, Labbé C (2002) Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. CABI, Wallingford, pp 256–267Google Scholar
  16. Bencina M, Panneman H, Ruijter GJ, Legiša M, Visser J (1997) Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalytic subunit. Microbiology 143(4):1211–1220CrossRefGoogle Scholar
  17. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bheri M, Fareeda G, Makandar R (2016) Assessing host specialization of Erysiphe pisi on garden pea germplasm through genotypic and phenotypic characterization. Euphytica 212:1–14CrossRefGoogle Scholar
  19. Bheri M, Bhosle SM, Makandar R (2019) Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiol Res 222:25–34CrossRefGoogle Scholar
  20. Bhosle SM, Marathe N, Makandar R (2019) The er2 gene resistance against powdery mildew infection is associated with enhanced antioxidative protection and defense gene expression. Physiol Mol Plant Pathol 106(2019):253–262CrossRefGoogle Scholar
  21. Bindslev L (2001) Signal transduction in the establishment of Blumeri agraminis infection structures. PhD thesis, Institute of Molecular Biology, Copenhagen University, DenmarkGoogle Scholar
  22. Böhlenius H, Mørch SM, Godfrey D, Nielsen ME, Thordal-Christensen H (2010) The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell 22(11):3831–3844CrossRefPubMedPubMedCentralGoogle Scholar
  23. Both M, Eckert SE, Csukai M, MuÈller E, Dimopoulos G, Spanu PD (2005) Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Mol Plant Microbe Interact 18:125–133CrossRefGoogle Scholar
  24. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca 2+ sensor protein kinases. Nature 464(7287):418CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10(7):1723–1732CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–116CrossRefGoogle Scholar
  27. Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel rapid defense response. Cell 70:21–30CrossRefGoogle Scholar
  28. Braun U (1987) A monograph of the erysiphales (powdery mildews), vol 89. E. Schweizerbart: Beiheftzur Nova Hedwigia, StuttgartGoogle Scholar
  29. Braun U (1995) The powdery mildews (Erysiphales) of Europe. Gustav Fischer, StuttgartGoogle Scholar
  30. Braun U, Cook RTA, Inman AJ, Shin HD (2002a) The taxonomy of the powdery mildew fungi. In: Bélanger RR, Bushnell WR, Dik AJ, TLW C (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, pp 13–55Google Scholar
  31. Braun U, Cook RTA, Inman AJ, Shin HD (2002b) The taxonomy of the powdery mildews. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. The American Phytopathological Society Press, St. Paul, pp 56–65Google Scholar
  32. Bruce TJA, Pickett JA (2007) Plant defense signaling induced by biotic attacks. Curr Opin Plant Biol 10:387–392CrossRefPubMedPubMedCentralGoogle Scholar
  33. Bruno KS, Aramayo R, Minke PF, Metzenberg RL, Plamann M (1996) Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J 15:5772–5782CrossRefPubMedPubMedCentralGoogle Scholar
  34. Brutus A, Sicilia F, Macone A, Cervone F, de Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 107:9452–9457CrossRefPubMedGoogle Scholar
  35. Buschges R, Hollricher K, Panstruga R, Simmons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenedijk J (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705CrossRefPubMedPubMedCentralGoogle Scholar
  36. Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16(9):2514–2528CrossRefPubMedPubMedCentralGoogle Scholar
  37. Candresse T, Le Gall O, Maisonneuve B, German-Retana S, Redondo E (2002) The use of green fluorescent protein tagged recombinant viruses to test lettuce mosaic virus resistance in lettuce. Phytopathology 92:169–176CrossRefPubMedPubMedCentralGoogle Scholar
  38. Carver TLW, Ingerson SM (1987) Responses of Erysiphe graminis germlings to contact with artificial and host surfaces. Physiol Mol Plant Pathol 30:359–372CrossRefGoogle Scholar
  39. Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18:243–256CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant acquired resistance by salicylic acid. Science 262:1883–1885CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K (2010) Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol 51(4):585–595CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814CrossRefGoogle Scholar
  43. Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9(11):1973–1983PubMedPubMedCentralGoogle Scholar
  44. Coghlan SE, Walters DR (1990) Polyamine metabolism in ‘green islands’ on powdery mildew infected barley leaves: possible interactions with senescence. New Phytol 116(3):417–424CrossRefGoogle Scholar
  45. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977CrossRefPubMedPubMedCentralGoogle Scholar
  46. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38(6):716CrossRefPubMedPubMedCentralGoogle Scholar
  47. D’Maris Amick Dempsey AC, Vlot MC, Daniel FK (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156CrossRefPubMedPubMedCentralGoogle Scholar
  48. David D, Nair SA, Pillai MR (2013) Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression. Biochim Biophys Acta 1835(1):119–128PubMedPubMedCentralGoogle Scholar
  49. De Waard MA (1997) Significance of ABC transporters in fungicide sensitivity and resistance. Pectic Sci 51:271–275Google Scholar
  50. De Wit PJGM, Mehrabi R, Van Den Brug HA, Stergiopoulos I (2009) Fungal effector proteins: past, present and future. Mol Plant Pathol 10:735–747CrossRefPubMedGoogle Scholar
  51. Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278CrossRefPubMedGoogle Scholar
  52. Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17:644–655CrossRefPubMedGoogle Scholar
  53. Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233CrossRefPubMedGoogle Scholar
  54. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539CrossRefPubMedGoogle Scholar
  55. Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG (2004) The Melampsoralini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16(3):755–768CrossRefPubMedPubMedCentralGoogle Scholar
  56. Donald T, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas M, Dry I (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618CrossRefPubMedGoogle Scholar
  57. Doster M, Schnathorst W (1985) Effects of leaf maturity and cultivar resistance on development of the powdery mildew fungus on grapevines. Phytopathology 75:318–321CrossRefGoogle Scholar
  58. Douchkov D, Lück S, Johrde A, Nowara D, Himmelbach A, Rajaraman J, Schweizer P (2014) Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol 15(12):518CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dumas B, Freyssinet G, Pallett KE (1995) Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol 107:1091–1096CrossRefPubMedPubMedCentralGoogle Scholar
  60. Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH (2004) Identification of powderymildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed map kinase. Plant Mol Biol 55:1–15CrossRefPubMedGoogle Scholar
  61. Elliott C, Müller J, Miklis M, Bhat RA, Schulze-Lefert P, Panstruga R (2005) Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 385(1):243–254CrossRefPubMedGoogle Scholar
  62. Ellis J (2006) Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell 18:523–528CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ellis J, Jones D (1998) Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol 1:288–293CrossRefPubMedGoogle Scholar
  64. Ellis C, Turner JG (2002) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13(5):1025–1033CrossRefGoogle Scholar
  65. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371CrossRefPubMedGoogle Scholar
  66. Fang EG, Dean RA (2000) Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant Microbe Interact 13(11):1214–1227CrossRefPubMedGoogle Scholar
  67. Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB (2008) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct Plant Biol 35:1255–1266CrossRefGoogle Scholar
  68. Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, Cadle-Davidson L (2015) Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology 105(8):1104–1113CrossRefPubMedGoogle Scholar
  69. Fekete C, Fung RW, Szabó Z, Qiu W, Chang L, Schachtman DP, Kovács LG (2009) Up-regulated transcripts in a compatible powdery mildew–grapevine interaction. Plant Physiol Biochem 47(8):732–738CrossRefPubMedGoogle Scholar
  70. Fischer G, Wittman-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337:476–478CrossRefPubMedGoogle Scholar
  71. Flor HH (1954) Identification of races of flax rust by lines with single rust-conditioning genes (no. 1087). US Dept. of AgricultureGoogle Scholar
  72. Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54CrossRefGoogle Scholar
  73. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9(1):275–296CrossRefGoogle Scholar
  74. Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 13(2):821–829CrossRefGoogle Scholar
  75. Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter-and intracellular glutathione transport systems in plants. Trends Plant Sci 6(10):486–492CrossRefPubMedGoogle Scholar
  76. Francis SA, Dewey FM, Gurr SJ (1996) The role of cutinase in germling development and infection by Erysiphe graminis f.sp. hordei. Physiol Mol Plant Pathol 49(3):201–211CrossRefGoogle Scholar
  77. Freskgard PO, Bergenhem N, Jonsson BH, Svensson M, Carlsson U (1992) Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase. Science 258(5081):466–468CrossRefPubMedGoogle Scholar
  78. Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956CrossRefPubMedPubMedCentralGoogle Scholar
  79. Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378CrossRefPubMedGoogle Scholar
  80. Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 46(1):236–249CrossRefGoogle Scholar
  81. Gabriel DW, Rolfe BG (1990) Working models of specific recognition in plant–microbe interactions. Annu Rev Phytopathol 28:365–391CrossRefGoogle Scholar
  82. Gao Z, Eyers S, Thomas C, Ellis N, Maule A (2004a) Identification of markers tightly linked to sbm recessive genes for resistance to Pea seed-borne mosaic virus. Theor Appl Genet 109:488–494CrossRefPubMedGoogle Scholar
  83. Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2004b) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385CrossRefPubMedGoogle Scholar
  84. Giraldo MC, Valent B (2013) Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11(11):800CrossRefPubMedGoogle Scholar
  85. Gjetting T, Carver TL, Skot L, Lyngkjaer MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant Microbe Interact 17:729–738CrossRefPubMedGoogle Scholar
  86. Godfrey D, Böhlenius H, Pedersen C, Zhang Z, Emmersen J, Thordal-Christensen H (2010) Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 11(1):317CrossRefPubMedPubMedCentralGoogle Scholar
  87. Gold S, Duncan G, Barrett K, Kronstad J (1994) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8(23):2805–2816CrossRefPubMedGoogle Scholar
  88. Göllner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742CrossRefPubMedGoogle Scholar
  89. Gopalan S, Bauer DW, Alfano JR, Loniello AO, He SY, Collmer A (1996) Expression of the Pseudomonas syringaea virulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8:1095–1105PubMedPubMedCentralGoogle Scholar
  90. Green JR, Carver TLW, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. APS Press, St Paul, pp 66–82Google Scholar
  91. Gronover CS, Kasulke D, Tudzynski P, Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 14(11):1293–1302CrossRefPubMedGoogle Scholar
  92. Guan X, Zhao H, Xu Y, Wang Y (2011) Transient expression of glyoxal oxidase from the Chinese wild grape Vitispseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma 248:415–423CrossRefPubMedGoogle Scholar
  93. Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, Ver Loren van Themaat E (2013) Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci U S A 110:E2219–E2228CrossRefPubMedPubMedCentralGoogle Scholar
  94. Hall AA, Gurr SJ (2000) Initiation of appressorial germ tube differentiation and appressorial hooking: distinct morphological events regulated by cAMP signalling in Blumeria graminis f. sp. hordei. Physiol Mol Plant Pathol 56:39–46CrossRefGoogle Scholar
  95. Hall AA, Bindslev L, Rouster J, Rasmussen SW, Oliver RP, Gurr SJ (1999) Involvement of cAMP and protein kinase A in conidial differentiation by Erysiphe graminis f. sp. hordei. Mol Plant Microbe Interact 12(11):960–968CrossRefPubMedGoogle Scholar
  96. Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U (2010) Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose-and chain length-dependent manner. New Phytol 188(4):1039–1054CrossRefPubMedGoogle Scholar
  97. Hansjakob A, Riederer M, Hildebrandt U (2011) Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol 60(6):1151–1161CrossRefGoogle Scholar
  98. Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol 10:342–348CrossRefGoogle Scholar
  99. Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Doehlemann G (2015) The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206(3):1116–1126CrossRefGoogle Scholar
  100. Heringa RJ, Norei AV, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169CrossRefGoogle Scholar
  101. Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia from several powdery mildew fungi. Mycoscience 37:283–288CrossRefGoogle Scholar
  102. Hoefle C, Huckelhoven R (2008) Enemy at the gates: traffic at the plant cell pathogen interface. Cell Microbiol 10:2400–2407CrossRefGoogle Scholar
  103. Hoefle C, Huesmann C, Schultheiss H, Börnke F, Hensel G, Kumlehn J, Hückelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23(6):2422–2439CrossRefPubMedPubMedCentralGoogle Scholar
  104. Hu G, Kamp A, Linning R, Naik S, Bakkeren G (2007) Complementation of Ustilagomaydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes. Mol Plant Microbe Interact 20(6):637–647CrossRefGoogle Scholar
  105. Hu Y, Liang Y, Zhang M, Tan F, Zhong S, Li X, Gong G, Chang X, Shang J, Tang S, Li T, Luo P (2018) Comparative transcriptome profiling of Blumeria graminis f. sp. tritici during compatible and incompatible interactions with sister wheat lines carrying and lacking Pm40. PLoS One 13(7):e0198891CrossRefPubMedPubMedCentralGoogle Scholar
  106. Huckelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17CrossRefGoogle Scholar
  107. Hückelhoven R, Kogel K-H (1998) Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei). Mol Plant Microbe Interact 11:292–300CrossRefGoogle Scholar
  108. Huckelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiol 119:1251–1260CrossRefPubMedPubMedCentralGoogle Scholar
  109. Huckelhoven R, Dechert C, Kogel K-H (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A 100:5555–5560CrossRefPubMedPubMedCentralGoogle Scholar
  110. Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery mildew immunity: silver bullet or simply nonhost resistance? Mol Plant Pathol 7:605–610CrossRefPubMedPubMedCentralGoogle Scholar
  111. Humphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12(9):866–878CrossRefPubMedPubMedCentralGoogle Scholar
  112. Hurkman WJ, Tanaka CK (1996) Germin gene expression is induced in wheat leaves by powdery mildew infection. Plant Physiol 111:735–739CrossRefPubMedPubMedCentralGoogle Scholar
  113. Hwang I, Robinson DG (2009) Transport vesicle formation in plant cells. Curr Opin Plant Biol 12(6):660–669CrossRefPubMedPubMedCentralGoogle Scholar
  114. Hyde KD (1988) Studies on the tropical marine fungi of Brunei. Bot J Linnean Soc 98(2):135–151CrossRefGoogle Scholar
  115. Idnurm A, Howlett BJ (2001) Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol 2(4):241–255CrossRefPubMedPubMedCentralGoogle Scholar
  116. Iyer-Pascuzzi AS, McCouch SR (2007) Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Mol Plant Microbe Interact 20:731–739CrossRefPubMedPubMedCentralGoogle Scholar
  117. Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856CrossRefPubMedPubMedCentralGoogle Scholar
  118. Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513CrossRefPubMedPubMedCentralGoogle Scholar
  119. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014CrossRefPubMedPubMedCentralGoogle Scholar
  120. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedPubMedCentralGoogle Scholar
  121. Jones L, Riaz S, Morales-Cruz A, Amrine KC, McGuire B, Gubler WD, Walker MA, Cantu D (2014) Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 15(1):1081CrossRefPubMedPubMedCentralGoogle Scholar
  122. Jørgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119CrossRefGoogle Scholar
  123. Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330(6006):968–971CrossRefPubMedPubMedCentralGoogle Scholar
  125. Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–451CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kinane J, Oliver RP (2003) Evidence that the appressorial development in barley powdery mildew is controlled by MAP kinase activity in conjunction with the cAMP pathway. Fungal Genet Biol 39(1):94–102CrossRefGoogle Scholar
  127. Kinane J, Dalvin S, Bindslev L, Hall A, Gurr S, Oliver R (2000) Evidence that the cAMP pathway controls emergence of both primary and appressorial germ tubes of barley powdery mildew. Mol Plant Microbe Interact 13(5):494–502CrossRefGoogle Scholar
  128. Kirik MM, Kitsno VO, Basyuk GF (1974) The role of redox enzymes in the resistance of pea to Erysiphe polygoni DC. Nauk Pr Ukr Sils KogospodAkad 84:198–201Google Scholar
  129. Kiyosawa S, Mackill DS, Bonman JM, Tanak Y, Ling ZZ (1986) An attempt of classification of world’s rice varieties based on reaction pattern to blast fungus strains. Bull Natl Inst Agrobiol Resour 2:13–39Google Scholar
  130. Kobayshi I, Tanaka C, Yamoka N, Kunoh H (1991) Morphogenesis of Erysiphe graminis conidia on artificial membranes. Trans Mycol Soc Jpn 32:187–198Google Scholar
  131. Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2(5):437–445PubMedPubMedCentralGoogle Scholar
  132. Kohorn BD, Kohorn SL (2012) The cell wall associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88CrossRefPubMedPubMedCentralGoogle Scholar
  133. Kooman-Gersmann M, Honée G, Bonnema G, De Wit PJGM (1996) A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant Cell 8:929–938CrossRefPubMedPubMedCentralGoogle Scholar
  134. Kulkarni RD, Thon MR, Pan H, Dean RA (2005) Novel G–protein–coupled receptor–like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24CrossRefPubMedPubMedCentralGoogle Scholar
  135. Kusch S, Ahmadinejad N, Panstruga R, Kuhn H (2014) In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f. sp. hordei). BMC Genomics 15(1):843CrossRefPubMedPubMedCentralGoogle Scholar
  136. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48(1):251–275CrossRefGoogle Scholar
  137. Lawrence GJ, Mayo GME, Shepherd KW (1981) Interactions between genes controlling pathogenicity in the flax rust fungus. Phytopathology 71:12–19CrossRefGoogle Scholar
  138. Leister RT, Ausubel FM, Katagiri F (1996) Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci U S A 93:15497–15502CrossRefPubMedPubMedCentralGoogle Scholar
  139. Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452CrossRefPubMedPubMedCentralGoogle Scholar
  140. Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Wang Z (2009) The Magnaporthe oryzaea virulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22(4):411–420CrossRefPubMedPubMedCentralGoogle Scholar
  141. Liang S, Wang ZY, Liu PJ, Li DB (2006) A Gγ subunit promoter T-DNA insertion mutant A1-412 of Magnaporthe grisea is defective in appressorium formation, penetration and pathogenicity (Chinese). Chin Sci Bull 51:2037–2040CrossRefGoogle Scholar
  142. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F (2005) Pre-and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310(5751):1180–1183CrossRefPubMedPubMedCentralGoogle Scholar
  143. Liu S, Dean RA (1997) G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10(9):1075–1086CrossRefPubMedPubMedCentralGoogle Scholar
  144. Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Zhou JM (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336(6085):1160–1164CrossRefPubMedPubMedCentralGoogle Scholar
  145. Lo SCC, Hipskind JD, Nicholson RL (1999) cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochio bolus heterostrophus or Colletotrichum sublineolum. Mol Plant Microbe Interact 12:479–489CrossRefPubMedPubMedCentralGoogle Scholar
  146. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272CrossRefPubMedPubMedCentralGoogle Scholar
  147. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436CrossRefPubMedPubMedCentralGoogle Scholar
  148. Mehrabi R, Zhao X, Kim Y, Xu JR (2009) The cAMP signaling and MAP kinase pathways in plant pathogenic fungi. Plant Relationsh:157–172Google Scholar
  149. Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P (2002) CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Mol Microbiol 46:305–318CrossRefPubMedPubMedCentralGoogle Scholar
  150. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedPubMedCentralGoogle Scholar
  151. Mohapatra C, Chand R, Navathe S, Sharma S (2016) Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea. Plant Physiol Biochem 106:54–63CrossRefPubMedPubMedCentralGoogle Scholar
  152. Monteiro S, Barakat M, Piçarra-Pereira MA, Teixeira AR, Ferreira RB (2003) Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology 93:1505–1512CrossRefPubMedPubMedCentralGoogle Scholar
  153. Morales M, Orjeda G, Nieto C, van Leeuwen H, Monfort A, Charpentier M, Caboche M, Arus P, Puigdomenech P, Aranda MA, Dogimont C, Bendahmane A, Garcia-Mas J (2005) A physical map covering the nsv locus that confers resistance to Melon necrotic spot virus in melon (Cucumis melo L.). Theor Appl Genet 111:914–922CrossRefPubMedPubMedCentralGoogle Scholar
  154. Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaportheoryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21(4):1273–1290CrossRefPubMedPubMedCentralGoogle Scholar
  155. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, andPevzner SJ (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601CrossRefPubMedPubMedCentralGoogle Scholar
  156. Narsinghani VG (1979) Inheritance of powdery mildew in peas (Pisum sativum L.). Indian J Horticult 36(4):471–472Google Scholar
  157. Nathues E, Joshi S, Tenberge KB, von den Driesch M, Oeser B, Bäumer N, Tudzynski P (2004) CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen, Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol Plant Microbe Interact 17(4):383–393CrossRefPubMedPubMedCentralGoogle Scholar
  158. Nicaise V, German-Retana S, Sanjuán R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol 132(3):1272–1282CrossRefPubMedPubMedCentralGoogle Scholar
  159. Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomenech P, Pitrat M, Caboche M, Dogimont C, Garcia Mas J (2006) An eIF4E allele confers resistance to an uncapped and non polyadenylated RNA virus in melon. Plant J 48(3):452–462CrossRefPubMedPubMedCentralGoogle Scholar
  160. Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972CrossRefPubMedPubMedCentralGoogle Scholar
  161. Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr Opin Plant Biol 8(4):361–368CrossRefPubMedPubMedCentralGoogle Scholar
  162. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141CrossRefPubMedPubMedCentralGoogle Scholar
  163. Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266CrossRefPubMedPubMedCentralGoogle Scholar
  164. Oliver R, Osbourn A (1995) Molecular dissection of fungal phytopathogenicity. Microbiology 141(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  165. Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6(4):320–326CrossRefPubMedPubMedCentralGoogle Scholar
  166. Panstruga R (2005) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Mol Biol 59(3):485–500CrossRefPubMedPubMedCentralGoogle Scholar
  167. Patykowski J, Urbanek H (2003) Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J Phytopathol 151:153–161CrossRefGoogle Scholar
  168. Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F, Visser RG, Bai Y, Lotti C, Ricciardi L (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123(8):1425–1431CrossRefPubMedPubMedCentralGoogle Scholar
  169. Pedersen C, van Themaat EVL, McGuffin LJ, Abbott JC, Burgis TA, Barton G, Cramer R (2012) Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13(1):694CrossRefPubMedPubMedCentralGoogle Scholar
  170. Pennington HG, Gheorghe DM, Damerum A, Pliego C, Spanu PD, Cramer R, Bindschedler LV (2016) Interactions between the powdery mildew effector BEC1054 and barley proteins identify candidate host targets. J Proteome Res 15(3):826–839CrossRefPubMedPubMedCentralGoogle Scholar
  171. Peterhansel C, Freialdenhoven A, Kurth J, Kolsch R, Schulze-Lefert P (1997) Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9:1397–1409CrossRefPubMedPubMedCentralGoogle Scholar
  172. Pieterse CM, Leon-Reyes A, van der Ent S, van Wees SC (2009) Networking by small molecule hormones in plant immunity. Nat Chem Biol 5:3CrossRefGoogle Scholar
  173. Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085CrossRefPubMedPubMedCentralGoogle Scholar
  174. Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430:887–889CrossRefPubMedGoogle Scholar
  175. Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, Surana P, Schweizer P (2013) Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant Microbe Interact 26(6):633–642CrossRefPubMedGoogle Scholar
  176. Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia:1009–1016Google Scholar
  177. Quentin M, Abad P, Favery B (2013) Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci 4:53CrossRefPubMedPubMedCentralGoogle Scholar
  178. Rakotomalala M, Pinel-Galzi A, Albar L, Ghesquiere A, Rabenantoandro Y, Ramavovololona P, Fargette D (2008) Resistance to rice yellow mottle virus in rice germplasm in Madagascar. Eur J Plant Pathol 122:277–286CrossRefGoogle Scholar
  179. Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JD, Brown JK (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18(9):2402–2414CrossRefPubMedPubMedCentralGoogle Scholar
  180. Rispail N, Di Pietro A (2009) Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol Plant Microbe Interact 22:830–839CrossRefPubMedGoogle Scholar
  181. Rivas S, Romeis T, Jones JDG (2002) The Cf-9 disease resistance protein is present in an similar to 420-kilodalton heteromultimeric membrane-associated complex at one molecule per complex. Plant Cell 14:689–702CrossRefPubMedPubMedCentralGoogle Scholar
  182. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45CrossRefPubMedGoogle Scholar
  183. Robatzek S (2007) Vesicle trafficking in plant immune responses. Cell Microbiol 9:1–8CrossRefPubMedGoogle Scholar
  184. Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379CrossRefPubMedGoogle Scholar
  185. Rooney HCE (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance (vol 308, pg 1783, 2005). Science 310(5745):54CrossRefGoogle Scholar
  186. Sacristán S, Vigouroux M, Pedersen C, Skamnioti P, Thordal-Christensen H, Micali C et al (2009) Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons. PLoS One 4(10):e7463CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141(2):336–340CrossRefPubMedPubMedCentralGoogle Scholar
  188. Salmeron JM, Barker SJ, Carland FM, Mehta AY, Staskawicz BJ (1994) Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6:511–520PubMedPubMedCentralGoogle Scholar
  189. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19(4):2435–2444CrossRefPubMedPubMedCentralGoogle Scholar
  190. Scheffer J, Chen C, Heidrich P, Dickman MB, Tudzynski P (2005) A CDC42 homologue in Claviceps purpurea is involved in vegetative differentiation and is essential for pathogenicity. Eukaryotic Cell 4(7):1228–1238CrossRefPubMedPubMedCentralGoogle Scholar
  191. Schiff CL, Wilson IW, Somerville SC (2001) Polygenic powdery mildew disease resistance in Arabidopsis thaliana: quantitative trait analysis of the accession Warschau-1. Plant Pathol 50:690–701CrossRefGoogle Scholar
  192. Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128(4):1447–1454CrossRefPubMedPubMedCentralGoogle Scholar
  193. Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36(5):589–601CrossRefPubMedGoogle Scholar
  194. Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667CrossRefPubMedGoogle Scholar
  195. Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interference with gene function at the single-cell level in cereals. Plant J 24:895–903CrossRefPubMedGoogle Scholar
  196. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063–2065CrossRefPubMedGoogle Scholar
  197. Seong K, Hou Z, Tracy M, Kistler HC, Xu JR (2005) Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95(7):744–750CrossRefPubMedPubMedCentralGoogle Scholar
  198. Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4(1):17–27CrossRefPubMedPubMedCentralGoogle Scholar
  199. Shi A, Mmbaga MT (2006) Perpetuation of powdery mildew infection and identification of Erysiphe australiana as the crape myrtle pathogen in mid-Tennessee. Plant Dis 90(8):1098CrossRefPubMedPubMedCentralGoogle Scholar
  200. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64(2):204–214CrossRefPubMedPubMedCentralGoogle Scholar
  201. Silva-Gomesa S, Decouta A, Nigoua J (2014) Pathogen-associated molecular patterns (PAMPs). In: Parnham M (ed) Encyclopedia of inflammatory diseases. Springer, Basel, pp 1–16Google Scholar
  202. Smart CD, Myers KL, Restrepo S, Martin GB, Fry WE (2003) Partial resistance of tomato to Phytophthora infestans is not dependent upon ethylene, jasmonic acid, or salicylic acid signaling pathways. Mol Plant Microbe Interact 16(2):141–148CrossRefPubMedGoogle Scholar
  203. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Lebrun MH (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330(6010):1543–1546CrossRefPubMedGoogle Scholar
  204. Speth EB, Lee YN, He SY (2007) Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr Opin Plant Biol 10(6):580–586CrossRefPubMedPubMedCentralGoogle Scholar
  205. Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746CrossRefPubMedPubMedCentralGoogle Scholar
  206. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263CrossRefPubMedPubMedCentralGoogle Scholar
  207. Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221PubMedPubMedCentralGoogle Scholar
  208. Tak H, Mhatre M (2013) Molecular characterization of VvSDIR1 from Vitis vinifera and its functional analysis by heterologous expression in Nicotiana tabacum. Protoplasma 250(2):565–576CrossRefGoogle Scholar
  209. Takamatsu S (2004) Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience 45(2):147–157CrossRefGoogle Scholar
  210. Tang D, Innes RW (2002) Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32(6):975–983CrossRefGoogle Scholar
  211. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2060–2063CrossRefGoogle Scholar
  212. Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell Online 23(1):4–15CrossRefGoogle Scholar
  213. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11(6):1187–1194CrossRefGoogle Scholar
  214. Tiwari KR, Penner GA, Warkentin TD (1997) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310CrossRefGoogle Scholar
  215. Tiwari KR, Penner GA, Warkentin TD (1998) Identification of powdery mildew resistance in pea. Can J Plant Sci 77:307–310CrossRefGoogle Scholar
  216. Trujillo M, Troeger M, Niks RE, Kogel KH, Huckelhoven R (2004) Mechanistic and genetic overlap of barley host and non host resistance to Blumeria graminis. Mol Plant Pathol 5(5):389–396CrossRefGoogle Scholar
  217. Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci U S A 104:1075–1080CrossRefPubMedPubMedCentralGoogle Scholar
  218. Tyrka M, Perovic D, Wardynska A, Ordon F (2008) A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. J Appl Genet 49:127–134CrossRefGoogle Scholar
  219. Underwood W, Somerville SC (2008) Focal accumulation of defences at sites of fungal pathogen attack. J Exp Bot 59:3501–3508CrossRefPubMedPubMedCentralGoogle Scholar
  220. Urban M, Bhargava T, Hamer JE (1999) An ATP driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18(3):512–521CrossRefPubMedPubMedCentralGoogle Scholar
  221. Vaid A, Tyagi PD (1997) Genetics of powdery mildew resistance in pea. Euphytica 96(2):203–206CrossRefGoogle Scholar
  222. Van Den Burg HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E (2003) Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J Biol Chem 278:27340CrossRefGoogle Scholar
  223. Van der Hoorn RAL, Kamoun S (2008) From guardee to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017CrossRefPubMedPubMedCentralGoogle Scholar
  224. Várallyay É, Giczey G, Burgyán J (2012) Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Arch Virol 157(7):1345–1350CrossRefGoogle Scholar
  225. Viaud MC, Balhadère PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14(4):917–930CrossRefPubMedPubMedCentralGoogle Scholar
  226. Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione-linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164CrossRefGoogle Scholar
  227. Vleeshouwers VG, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microbe Interact 27(3):196–206CrossRefPubMedPubMedCentralGoogle Scholar
  228. Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci U S A 97:1897–1902CrossRefPubMedPubMedCentralGoogle Scholar
  229. Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J. 40:968–978CrossRefPubMedPubMedCentralGoogle Scholar
  230. von Röpenack E, Parr A, Schulze-Lefert P (1998) Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 272:9013–9022CrossRefGoogle Scholar
  231. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20(2):471–481CrossRefPubMedPubMedCentralGoogle Scholar
  232. Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47(6):1601–1612CrossRefPubMedPubMedCentralGoogle Scholar
  233. Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153(4):1929–1948PubMedPubMedCentralGoogle Scholar
  234. Wen Y, Wang X, Xiao S, Wang Y (2012) Ectopic expression of VpALDH2B4, a novel aldehyde dehydrogenase gene from Chinese wild grapevine (Vitispseudoreticulata), enhances resistance to mildew pathogen sand salt stress in Arabidopsis. Planta 236:525–539CrossRefPubMedPubMedCentralGoogle Scholar
  235. Weng K, Li ZQ, Liu RQ, Wang L, Wang YJ, Xu Y (2014) Transcriptome of Erysiphe necator-infected Vitispseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Horticult Res 1:14049CrossRefGoogle Scholar
  236. Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, Mukhtar MS (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375CrossRefPubMedPubMedCentralGoogle Scholar
  237. Whipps JM, Budge SP, Fenlon JS (1998) Characteristics and host range of tomato powdery mildew. Plant Pathol 47(1):36–48CrossRefGoogle Scholar
  238. Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S, Spanu PD (2013) The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 45(9):1092–1096CrossRefGoogle Scholar
  239. Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession kashmir-1. Genetics 158:1301–1309PubMedPubMedCentralGoogle Scholar
  240. Wladimir I, Tameling L, Takken FLW (2008) Resistance proteins: scout of the plant innate immune system. Eur J Plant Pathol 121:243–255CrossRefGoogle Scholar
  241. Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40(1):251–285CrossRefPubMedPubMedCentralGoogle Scholar
  242. Wolter M, Hollricher K, Salamini F, Schulze-Lefert P (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet 239(1–2):122–128CrossRefPubMedPubMedCentralGoogle Scholar
  243. Xiao SY, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12:757–768CrossRefPubMedPubMedCentralGoogle Scholar
  244. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120CrossRefPubMedPubMedCentralGoogle Scholar
  245. Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genet Biol 31(3):137–152CrossRefPubMedPubMedCentralGoogle Scholar
  246. Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706CrossRefGoogle Scholar
  247. Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact 10(2):187–194CrossRefGoogle Scholar
  248. Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen-and stress-inducible expression from Chinese wild Vitispseudoreticulata. Planta 231:475–487CrossRefPubMedPubMedCentralGoogle Scholar
  249. Xu TF, Zhao XC, Jiao YT, Wei JY, Wang L, Xu Y (2014) A pathogenesis related protein, VpPR-10.1, from Vitispseudoreticulata: an insight of its mode of antifungal activity. PLoS ONE 9:e95102CrossRefPubMedPubMedCentralGoogle Scholar
  250. Xue CY, Park G, Choi WB, Zheng L, Dean RA, Xu JR (2002) Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14:2107–2119CrossRefPubMedPubMedCentralGoogle Scholar
  251. Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32(6):1010–1032CrossRefPubMedPubMedCentralGoogle Scholar
  252. Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S (2009) Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J 60(3):539–550CrossRefPubMedPubMedCentralGoogle Scholar
  253. Yang W, Shi Y, Ma J, Correll J, Evans M, Motes D, Xiong H, Weng Y, Qin J (2018) Identification of the pathogen Podosphaeraerigerontis-canadensis causing powdery mildew disease on dandelion (Taraxacumofficinale) in US Arkansas state. Austral Plant Dis Notes 13:12CrossRefGoogle Scholar
  254. Yarwood CE (1957) Powdery mildews. Bot Rev 23:235–300CrossRefGoogle Scholar
  255. Yi HY, Wei Rong X, Shu Xiu L, Tao L, YueJin W (2011) Fusion expression and purificationof the transcription factor VpRFP1 gene resistance to Uncinulanecator from Chinese wild Vitispseudoreticulata and preparation of its polyclonal antibodies. J Agric Biotechnol 19:85–92Google Scholar
  256. Yu Y, Xu W, Wang S, Xu Y, Li HE, Wang Y, Li S (2011) VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitispseudoreticulata, functions as a transcriptional activator in defence response of grapevine. J Exp Bot 62(15):5671–5682CrossRefPubMedPubMedCentralGoogle Scholar
  257. Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y (2013) The Chinese wild grapevine (Vitispseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol 200(3):834–846CrossRefPubMedPubMedCentralGoogle Scholar
  258. Zeyen RJ, Carver TLW, Lyngkjaer MF (2002) Epidermal cell papillae. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS, St. Paul, pp 107–124Google Scholar
  259. Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334CrossRefPubMedPubMedCentralGoogle Scholar
  260. Zhang Z, Gurr SJ (2001) Expression and sequence analysis of the Blumeria graminis mitogen-activated protein kinase genes, mpk1 and mpk2. Gene 266:57–65CrossRefPubMedPubMedCentralGoogle Scholar
  261. Zhang Z, Collinge DB, Thordal-Christensen H (1995) Germin like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J 8:139–145CrossRefGoogle Scholar
  262. Zhang Z, Priddey G, Gurr SJ (2001) The barley powdery mildew protein kinase C gene, pkc1 and pkc-like gene, are differentially expressed during morphogenesis. Mol Plant Pathol 2(6):327–337CrossRefPubMedPubMedCentralGoogle Scholar
  263. Zhang Z, Henderson C, Gurr SJ (2004) Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence. Mol Plant Pathol 5(6):537–547CrossRefPubMedPubMedCentralGoogle Scholar
  264. Zhang Z, Henderson C, Perfect E, Carver TLW, Thomas BJ, Skamnioti P, Gurr SJ (2005) Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol Plant Pathol 6(5):561–575CrossRefPubMedPubMedCentralGoogle Scholar
  265. Zhang H, Tang W, Liu K, Huang Q, Zhang X, Yan X, Chen Y, Wang J, Qi Z, Wang Z, Zheng X (2011) Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaportheoryzae. PLoS Pathogens 7(12):e1002450CrossRefPubMedPubMedCentralGoogle Scholar
  266. Zhang WJ, Pedersen C, Kwaaitaal M, Gregersen PL, Mørch SM, Hanisch S, Kristensen A, Fuglsang AT, Collinge DB, Thordal-Christensen H (2012a) Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c. Mol Plant Pathol 13(9):1110–1119CrossRefPubMedPubMedCentralGoogle Scholar
  267. Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y, Zhang Y (2012b) Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11(3):253–263CrossRefPubMedPubMedCentralGoogle Scholar
  268. Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters AMA, Visser RG, Bai Y (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillulataurica. PloS One 8(7):e70723CrossRefPubMedPubMedCentralGoogle Scholar
  269. Zhou JM, Chai J (2008a) Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11(2):179–185CrossRefPubMedPubMedCentralGoogle Scholar
  270. Zhou JM, Chai J (2008b) Plant pathogen bacterial type III effectors sub due host responses. Curr Opin Microbiol 11:179–185CrossRefPubMedPubMedCentralGoogle Scholar
  271. Zhu Z, Shi J, Cao J, He M, Wang Y (2012) VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitispseudoreticulata. Plant Cell Rep 31(11):2109–2120CrossRefPubMedPubMedCentralGoogle Scholar
  272. Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitispseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170(10):923–933CrossRefPubMedPubMedCentralGoogle Scholar
  273. Zhu Q, Gao P, Wan Y, Cui H, Fan C, Liu S, Luan F (2018) Comparative transcriptome profiling of genes and pathways related to resistance against powdery mildew in two contrasting melon genotypes. Sci Horticult 227:169–180CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sheetal M. Bhosle
    • 1
  • Nitinkumar Marathe
    • 1
  • Ragiba Makandar
    • 1
    Email author
  1. 1.Department of Plant Sciences, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations