Effects of the Activating Fluxes on the Properties of the Tungsten Inert Gas Welded Structural Steel

  • R. S. VidyarthyEmail author
  • R. Bhattacharjee
  • S. Mohapatra
  • B. B. Nayak
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Tungsten inert gas (TIG) welding process is a frequently recommended welding process for joining and repairing of the structural steels. However, its limitation towards the lesser depth of penetration decreases its productivity. Activating flux tungsten inert gas (A-TIG) welding is an innovative solution to the lesser depth of penetration without compromising the weld quality. In the current work, three different oxides SiO2, TiO2 and Cr2O3 are used as a single-component activating flux to develop the bead on plate-type welds on structural steel. Significant increase in depth of penetration was registered in the A-TIG weldments as compared conventionally TIG-welded samples. Weld bead geometry was studied through different aspects such as penetration depth, width, depth to width ratio and area of weld-fusion zone.


A-TIG welding Activating flux Bead geometry Microstructure Microhardness 


  1. 1.
    Vidyarthy, R.S., Dwivedi, D.K., Vasudevan, M.: J. Mater. Eng. Perform. 26, 1391–1403 (2017)CrossRefGoogle Scholar
  2. 2.
    Vasantharaja, P., Vasudevan, M.: J. Nucl. Mater. 421, 117–123 (2012)CrossRefGoogle Scholar
  3. 3.
    Nayee, S.G., Badheka, V.J.: J. Manuf. Process. 16, 137–143 (2014)CrossRefGoogle Scholar
  4. 4.
    Vidyarthy, R.S., Dwivedi, D.K.: J. Mater. Eng. Perform. 26, 5375–5384 (2017)CrossRefGoogle Scholar
  5. 5.
    Sakthivel, T., Vasudevan, M., Laha, K., Parameswaran, P., Chandravathi, K.S.S., Mathew, M.D.D., Bhaduri, K.K.: Mater. Sci. Eng. A 528, 6971–6980 (2011)Google Scholar
  6. 6.
    Maduraimuthu, V., Vasudevan, M., Parameswaran, P.: Trans. Indian Inst. Met. 68, 181–189 (2015)CrossRefGoogle Scholar
  7. 7.
    Ramkumar, K.D., Goutham, P.S., Radhakrishna, V.S., Tiwari, A., Anirudh, S.: J. Manuf. Process. 23, 231–241 (2016)CrossRefGoogle Scholar
  8. 8.
    Lakshminarayanan, A., Balasubramanian, V., Salahuddin, M.: J. Iron. Steel Res. Int. 17, 68–74 (2010)CrossRefGoogle Scholar
  9. 9.
    Vasudevan, M.: J. Mater. Eng. Perform. 26, 1325–1336 (2017)CrossRefGoogle Scholar
  10. 10.
    Vidyarthy, R.S., Dwivedi, D.K., Muthukumaran, V.: Mater. Manuf. Process. 33, 709–717 (2017)CrossRefGoogle Scholar
  11. 11.
    Tanaka, M., Lowke, J.J.: J. Phys. D. Appl. Phys. 40 (2007)Google Scholar
  12. 12.
    Vidyarthy, R.S., Dwivedi, D.K.: J. Manuf. Process. 22, 211–228 (2016)CrossRefGoogle Scholar
  13. 13.
    Sándor, T., Mekler, C., Dobránszky, J., Kaptay, G.: Metall. Mater. Trans. A 44, 351–361 (2013)CrossRefGoogle Scholar
  14. 14.
    Mills, K.C., Keene, B.J., Brooks, R.F., Shirali, A.: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 356, 911–925 (1998)Google Scholar
  15. 15.
    Vora, J.J., Badheka, V.J.: Trans. Indian Inst. Met. 69, 1755–1764 (2016)CrossRefGoogle Scholar
  16. 16.
    D.S. Howse, Improved Productivity in Fusion Welding, university of Warwick, 2002Google Scholar
  17. 17.
    Vidyarthy, R.S., Dwivedi, D.K.: J. Manuf. Process. 31, 523–535 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • R. S. Vidyarthy
    • 1
    Email author
  • R. Bhattacharjee
    • 2
  • S. Mohapatra
    • 2
  • B. B. Nayak
    • 2
  1. 1.Department of Mechanical EngineeringBITS-PilaniHyderabadIndia
  2. 2.School of Mechanical EngineeringKalinga Institute of Industrial Technology, Deemed to be UniversityBhubaneswarIndia

Personalised recommendations