Advertisement

DHS-Voting: A Distributed Homomorphic Signcryption E-Voting

  • Xingyue Fan
  • Ting Wu
  • Qiuhua Zheng
  • Yuanfang ChenEmail author
  • Xiaodong Xiao
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1123)

Abstract

In electronic voting, voters encrypt their ballots and post them on a bulletin board, where the results are tallied by authorities. The right to tally is fully controlled by authorities, who generates a certificate to prove the results are correct, but their attempts to tamper with the bulletin board and falsify the certificate are inevitable. Therefore, we propose an electronic voting scheme based on distributed encryption and homomorphic signcryption, DHS-Voting, which can not only enable the verification of signatures to be completed quickly, but also allows anyone to get the result of the election with the help of the authorities, making the election results more credible. In addition, we prove that DHS-Voting satisfies the ballot privacy and some necessary properties of electronic voting, which we will prove in detail in the paper.

Keywords

Electronic voting Homomorphic encryption Signcryption Distributed encryption Privacy 

References

  1. 1.
    Del Blanco, D.Y.M., Alonso, L.P., Alonso, J.A.H.: Review of cryptographic schemes applied to remote electronic voting systems: remaining challenges and the upcoming post-quantum paradigm. Open Math. 16(6), 95–112 (2018) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57220-1_66CrossRefGoogle Scholar
  3. 3.
    Islam, N., Alam, K.M.R., Tamura, S., Morimoto, Y., et al.: A new e-voting scheme based on revised simplified verifiable re-encryption mixnet. In: International Conference on Networking, Systems and Security, Dhaka. IEEE (2017)Google Scholar
  4. 4.
    Chang, D., Chauhan, A.K., K, M.N., Kang, J.: Apollo: end-to-end verifiable voting protocol using mixnet and hidden tweaks. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 194–209. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30840-1_13CrossRefGoogle Scholar
  5. 5.
    Kumar, M., Katti, C.P., Saxena, P.C.: A secure anonymous e-voting system using identity-based blind signature scheme. In: Shyamasundar, R.K., Singh, V., Vaidya, J. (eds.) ICISS 2017. LNCS, vol. 10717, pp. 29–49. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72598-7_3CrossRefGoogle Scholar
  6. 6.
    López-García, L., Perez, L.J.D., Rodríguez-Henríquez, F.: A pairing-based blind signature e-voting scheme. Comput. J. 57(10), 1460–1471 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., You, Q., Zhang, J.: A lightweight electronic voting scheme based on blind signature and Kerberos mechanism. In: International Conference on Electronics Information and Emergency Communication, Beijing, pp. 210–214. IEEE (2015)Google Scholar
  8. 8.
    Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the USENIX Security Symposium, Berkeley, pp. 335–348 (2008)Google Scholar
  9. 9.
    Yang, X., Yi, X., Kelarev, A., et al.: A secure verifiable ranked choice online voting system based on homomorphic encryption. IEEE Access 6, 20506–20519 (2018) CrossRefGoogle Scholar
  10. 10.
    Mateu, V., Miret, J.M., Sebé, F.: A hybrid approach to vector-based homomorphic tallying remote voting. Int. J. Inf. Secur. 15(2), 211–221 (2016)CrossRefGoogle Scholar
  11. 11.
    Huszti, A.: A homomorphic encryption-based secure electronic voting scheme. Publ. Math. 79(3), 479–496 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kiayias, A., Zacharias, T., Zhang, B.: An efficient E2E verifiable e-voting system without setup assumptions. IEEE Secur. Priv. 15(3), 14–23 (2017)CrossRefGoogle Scholar
  13. 13.
    Yi, X., Paulet, R., Bertino, E.: Homomorphic Encryption and Applications. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-319-12229-8CrossRefzbMATHGoogle Scholar
  14. 14.
    Huang, R., Li, Z., Zhao, J.: A verifiable fully homomorphic encryption scheme. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11611, pp. 412–426. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-24907-6_31CrossRefGoogle Scholar
  15. 15.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_2CrossRefGoogle Scholar
  16. 16.
    Zhang, P., Yu, J., Liu, H.: A homomorphic signcryption scheme and its application in electronic voting. J. Shenzhen Univ. Sci. Eng. 28(6), 489–494 (2011)Google Scholar
  17. 17.
    Bernhard, D., Cortier, V., Galindo, D.: A comprehensive analysis of game-based ballot privacy definitions. In: Symposium on Security and Privacy, San Jose. IEEE (2015)Google Scholar
  18. 18.
    Alhothaily, A., Hu, C., Alrawais, A., et al.: A secure and practical authentication scheme using personal devices. IEEE Access 5, 11677–11687 (2017)CrossRefGoogle Scholar
  19. 19.
    Bräunlich, K., Grimm, R.: A formal model for the requirement of verifiability in electronic voting by means of a bulletin board. In: Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp. 93–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39185-9_6CrossRefGoogle Scholar
  20. 20.
    Cortier, V., Galindo, D., Küsters, R., et al.: SoK: verifiability notions for e-voting protocols. In: IEEE Symposium on Security and Privacy, San Jose, pp. 779–798. IEEE (2016)Google Scholar
  21. 21.
    Rezaeibagha, F., Mu, Y., Zhang, S., Wang, X.: Provably secure homomorphic signcryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 349–360. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68637-0_21CrossRefGoogle Scholar
  22. 22.
    Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)CrossRefGoogle Scholar
  23. 23.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_7CrossRefGoogle Scholar
  24. 24.
    Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_38CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xingyue Fan
    • 1
  • Ting Wu
    • 1
  • Qiuhua Zheng
    • 1
  • Yuanfang Chen
    • 1
    Email author
  • Xiaodong Xiao
    • 1
  1. 1.School of CyberspaceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations