Visualized Panoramic Display Platform for Transmission Cable Based on Space-Time Big Data

  • Renxin Yu
  • Qinghuang Yao
  • Tianrong Zhong
  • Wei Li
  • Ying MaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1123)


On the basis of analyzing the traditional management modes of existing transmission cables, a novel implementation of the visualization platform for the transmission cable based on the space-time data is presented in Fujian power grid. The platform uses internet of things, big data and 3D GIS technology, to integrate multi-source massive data. It realizes the whole transmission cable three-dimensional data management, cable channel panoramic display, three-dimensional scene browsing and positioning, cable production management application, cable operation status monitoring, field operation application, VR user experience module, etc. In order to improve and ensure the safety and reliability operation of transmission cables, it provides support for decision making, comprehensive display, application and management of holographic panorama for transmission lines. It can also support client, multi-touch display system, separated flat panel control screen, mobile terminal and other diversified display terminal three-dimensional applications.


Space time big data 3D GIS technology Transmission cable Panoramic display Internet of things 



This work was supported in part by the National Natural Science Foundation of China (Grant No. 61502404), Natural Science Foundation of Fujian Province of China (Grant No. 2019J01851), Distinguished Young Scholars Foundation of Fujian Educational Committee (Grant No. DYS201707), Xiamen Science and Technology Program (Grant No. 3502Z20183059), and Open Fund of Key Laboratory of Data mining and Intelligent Recommendation, Fujian Province University. We thank the anonymous reviewers for their great helpful comments.


  1. 1.
    Hui, W., Kong, D.: Research on innovation of management concept of urban underground pipelines based on big-knowledge-thinking in the big data era. In: IEEE International Conference on Big Knowledge, pp. 220–223 (2017)Google Scholar
  2. 2.
    Liu, Q., Hou, P., Wang, G., Peng, T., Zhang, S.: Intelligent route planning on large road networks with efficiency and privacy. J. Parallel Distrib. Comput. 133, 93–106 (2019)CrossRefGoogle Scholar
  3. 3.
    Arif, M., Wang, G., Bhuiyan, M.Z.A., Wang, T., Chen, J.: A survey on security attacks in VANETs: communication, applications and challenges, vehicular communications, 100179 (2019)Google Scholar
  4. 4.
    Wang, T., Zhou, J., Liu, A., Bhuiyan, M.Z.A., Wang, G., Jia, W.: Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet Things J. 6(3), 4272–4282 (2019)CrossRefGoogle Scholar
  5. 5.
    Wang, T., Li, Y., Wang, G., Cao, J., Bhuiyan, M.Z.A., Jia, W.: Sustainable and efficient data collection from WSNs to cloud. IEEE Trans. Sustain. Comput. 4(2), 252–262 (2019)CrossRefGoogle Scholar
  6. 6.
    Doraiswamy, H., Freire, J., Lage, M., et al.: Spatio-temporal urban data analysis: a visual analytics perspective. IEEE Comput. Graphics Appl. 38(5), 26–35 (2018)CrossRefGoogle Scholar
  7. 7.
    Shih, M., Rozhon, C., Ma, K.L.: A declarative grammar of flexible volume visualization pipelines. IEEE Trans. Visual Comput. Graphics 25(1), 1 (2018)Google Scholar
  8. 8.
    Ma, Y., Huang, C., Sun, Y., Zhao, G., Lei, Y.: Review of power spatio-temporal big data technologies, applications, and challenges. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11637, pp. 197–206. Springer, Cham (2019). Scholar
  9. 9.
    Huang, R., Sun, Y., Huang, C., Zhao, G., Ma, Y.: A survey on fog computing. In: International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, pp. 160–169 (2019)Google Scholar
  10. 10.
    Wischgoll, T.: Display systems for visualization and simulation in virtual environments. Electron. Imaging 1, 78–88 (2017)CrossRefGoogle Scholar
  11. 11.
    Comino, M., Andjar, C., Chica, A., Brunet, P.: Error-aware construction and rendering of multi-scan panoramas from massive point clouds. Comput. Vis. Image Underst. 157(C), 43–54 (2017)CrossRefGoogle Scholar
  12. 12.
    Raspini, F., et al.: Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 8(1), 7253 (2018)CrossRefGoogle Scholar
  13. 13.
    Zhao, X., Yao, J., Gao, P., Guan, H.: Efficient sharing and fine-grained scheduling of virtualized GPU resources. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 742–752 (2018)Google Scholar
  14. 14.
    She, J., et al.: An appearance-preserving simplification method for complex 3D building models. Trans. GIS 23(2), 275–293 (2019)CrossRefGoogle Scholar
  15. 15.
    Yao, X., Li, G.: Big spatial vector data management: a review. Big Earth Data 2(1), 108–129 (2018)CrossRefGoogle Scholar
  16. 16.
    Gu, Q., Xie, H., Issa, R.R., Lu, C.: Location optimization with uncertainty for industrial project using discrete block model and spatial meshing algorithm. J. Comput. Civil Eng. 33(2), 04018064 (2018)CrossRefGoogle Scholar
  17. 17.
    Li, G., Smith, J., Liu, W.K.: Finite element simulation of saw-tooth chip in high-speed machining based on multiresolution continuum theory. Int. J. Adv. Manuf. Technol. 101(5–8), 1759–1772 (2019)CrossRefGoogle Scholar
  18. 18.
    Ahn, C.K., Shi, P., Basin, M.V.: Two-dimensional dissipative control and filtering for Roesser model. IEEE Trans. Autom. Control 60(7), 1745–1759 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chang, C., Qi, Y., Wu, J., Xia, J., Nie, S.: Speckle reduced lensless holographic projection from phase-only computer-generated hologram. Opt. Express 25(6), 6568–6580 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renxin Yu
    • 1
  • Qinghuang Yao
    • 2
  • Tianrong Zhong
    • 3
  • Wei Li
    • 3
  • Ying Ma
    • 4
    Email author
  1. 1.State Grid Fuzhou Power Supply CompanyFuzhouChina
  2. 2.State Grid Quanzhou Power Supply CompanyQuanzhouChina
  3. 3.Xiamen Great Power GeoInformation Technology Co., Ltd.XiamenChina
  4. 4.Xiamen University of TechnologyXiamenChina

Personalised recommendations