Advertisement

Recommender System for Decentralized Cloud Manufacturing

  • Karim AlinaniEmail author
  • Deshun Liu
  • Dong Zhou
  • Guojun Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1123)

Abstract

In today’s competitive markets where it is essential to provide high-quality results in order to cope up with the enormous and ever-growing demand for manufacturing resources, selection of optimal Cloud Manufacturing service provider and efficient service scheduling is the core of achieving high-quality and prompt outcomes. This paper elaborates on the use of recommender system to filter out the best candidate CMfg service provider based on various factors in a distributed model for an easily adaptable framework. This work is probably valuable for future research on the selection criterion of service providers and improving the efficiency of CMfg process as a whole.

Keywords

Cloud manufacturing Recommender system Decentralized cloud manufacturing Manufacturing cloud 

Notes

Acknowledgments

The work described in this paper is supported in part by National Natural Science Foundation of China under Grants 61632009 & 61876062, in part by the Guangdong Provincial Natural Science Foundation under Grant 2017A030308006, High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01, and the postdoctoral funding of Hunan University of Science and Technology, funding number 903-E61804.

References

  1. 1.
    Zhang, Y., Zhang, G., Liu, Y., et al.: Research on services encapsulation and virtualization access model of machine for cloud manufacturing. J. Intell. Manuf. 28, 1109–1123 (2017).  https://doi.org/10.1007/s10845-015-1064-2CrossRefGoogle Scholar
  2. 2.
    Cheng, Y., Tao, F., Zhao, D., Zhang, L.: Modeling of manufacturing service supply-demand matching hypernetwork in service-oriented manufacturing systems. Robot. Comput. Integr. Manuf. 45, 59–72 (2017).  https://doi.org/10.1016/j.rcim.2016.05.007CrossRefGoogle Scholar
  3. 3.
    Shen, X., Yao, X.: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems. Inform. Sci. 298, 198–224 (2015).  https://doi.org/10.1016/j.ins.2014.11.036MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wang, S., Guo, L., Kang, L., et al.: Research on selection strategy of machining equipment in cloud manufacturing. Int. J. Adv. Manuf. Technol. 71(9–12), 1549–1563 (2014).  https://doi.org/10.1007/s00170-013-5578-5CrossRefGoogle Scholar
  5. 5.
    Liu, W., Liu, B., Sun, D., Li, Y., Ma, G.: Study on multi-task oriented services composition and optimisation with the ‘Multi-Composition for Each Task’ pattern in cloud manufacturing systems. Int. J. Comput. Integr. Manuf. 26(8), 786–805 (2013).  https://doi.org/10.1080/0951192x.2013.766939CrossRefGoogle Scholar
  6. 6.
    Li, B., et al.: Cloud manufacturing: a new service-oriented networked manufacturing model. Comput. Integr. Manuf. Syst. 16(1), 1–7 (2010)Google Scholar
  7. 7.
    Xu, X.: From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf 28(1), 75–86 (2012).  https://doi.org/10.1016/j.rcim.2011.07.002CrossRefGoogle Scholar
  8. 8.
    Zhang, L., et al.: Cloud manufacturing: a new manufacturing paradigm. Ent. Inform. Syst. 8(2), 167–187 (2014).  https://doi.org/10.1080/17517575.2012.683812CrossRefGoogle Scholar
  9. 9.
    He, W., Xu, L.: A state-of-the-art survey of cloud manufacturing. Int. J. Comput. Integr. Manuf 28(3), 239–250 (2015).  https://doi.org/10.1080/0951192x.2013.874595CrossRefGoogle Scholar
  10. 10.
    Chen, J., Huang, G.Q., Wang, J.-Q., Yang, C.: A cooperative approach to service booking and scheduling in cloud manufacturing. Eur. J. Oper. Res 273(3), 861–873 (2019).  https://doi.org/10.1016/j.ejor.2018.09.007MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tao, F., Zhang, L., Liu, Y., Cheng, Y., Wang, L., Xu, X.: Manufacturing service management in cloud manufacturing: overview and future research directions. J. Manuf. Sci. Eng. 137(4), 040912–040923 (2015).  https://doi.org/10.1115/1.4030510CrossRefGoogle Scholar
  12. 12.
    Tao, F., LaiLi, Y., Xu, L., Zhang, L.: FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans. Ind. Inform 9(4), 2023–2033 (2013).  https://doi.org/10.1109/tii.2012.2232936CrossRefGoogle Scholar
  13. 13.
    Tao, F., Cheng, J., Cheng, Y., Gu, S., Zheng, T., Yang, H.: SDMSim: a manufacturing service supply-demand matching simulator under cloud environment. Robot. Comput. Integr. Manuf. 45, 34–46 (2017).  https://doi.org/10.1016/j.rcim.2016.07.001CrossRefGoogle Scholar
  14. 14.
    Chen, T.: Strengthening the competitiveness and sustainability of a semiconductor manufacturer with cloud manufacturing. Sustainability 6, 251–266 (2014).  https://doi.org/10.3390/su6010251CrossRefGoogle Scholar
  15. 15.
    He, W., Jia, G., Zong, H., Kong, J.: Multi-objective service selection and scheduling with linguistic preference in cloud manufacturing. Sustain. Sci. Pract. Policy 11(9), 2619 (2019).  https://doi.org/10.3390/su11092619CrossRefGoogle Scholar
  16. 16.
    Zhou, L., Zhang, L., Zhao, C., Laili, Y., Xu, L.: Diverse task scheduling for individualized requirements in cloud manufacturing. Ent. Inf. Sys. 12(3), 300–318 (2018).  https://doi.org/10.1080/17517575.2017.1364428CrossRefGoogle Scholar
  17. 17.
    Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: strategic vision and state-of-the-art. J. Manuf. Syst. 32(4), 564–579 (2013).  https://doi.org/10.1016/j.jmsy.2013.04.008CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Xu, X., Zhang, L., Wang, L., Zhong, R.Y.: Workload-based multi-task scheduling in cloud manufacturing. Robot. Comput. Integr. Manuf. 45, 3–20 (2017).  https://doi.org/10.1016/j.rcim.2016.09.008CrossRefGoogle Scholar
  19. 19.
    Škulj, G., Vrabič, R., Butala, P., Sluga, A.: Decentralised network architecture for cloud manufacturing. Int. J. Comput. Integr. Manuf. 30(4–5), 395–408 (2017).  https://doi.org/10.1080/0951192x.2015.1066861CrossRefGoogle Scholar
  20. 20.
    Tao, J., Zhang, S., Yang, D.: The safety detection for double tapered roller bearing based on deep learning. In: Wang, G., Chen, J., Yang, Laurence T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 485–496. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05345-1_42CrossRefGoogle Scholar
  21. 21.
    Barenji, A.V., Barenji, R.V., Roudi, D., et al.: A dynamic multi-agent-based scheduling approach for SMEs. Int. J. Adv. Manuf. Technol. 89(9–12), 3123–3137 (2017).  https://doi.org/10.1007/s00170-016-9299-4CrossRefGoogle Scholar
  22. 22.
    Alinani, K., Wang, G., Alinani, A., Hussain, D., Forrest, M.: Aggregating author profiles from multiple publisher networks to build author knowledge graph, pp. 1414–1421 (2018).  https://doi.org/10.1109/smartworld.2018.00245

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.School of Mechanical EngineeringHunan University of Science and TechnologyXiangtanChina
  3. 3.School of Computer ScienceGuanzhou UniversityGuanzhouChina

Personalised recommendations