Advertisement

A Travel Aid for Visually Impaired: R-Cane

  • Kanak Manjari
  • Madhushi Verma
  • Gaurav SingalEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

An Electronic Travel Aid (ETA) has become a necessity for visually impaired to provide them proper guidance and assistance in their daily routine. As the number of blind persons are gradually increasing, there is a dire need of an effective and low-cost solution for assisting them in their daily tasks. This paper presents a cane called R-Cane which is an ETA for the visually impaired and is capable of detecting obstacles in front direction using sonar sensor and alerts the user by informing whether the obstacle is within the range of one meter. In R-Cane, tensorflow object-detection API has been used for object recognition. It makes the user aware about the nature of objects by providing them voice-based output through bluetooth earphones. Raspberry Pi has been used for processing and Pi camera has been used to capture frames for object recognition. Further, we have implemented four models based on Single Shot Multibox Detector (SSD) for object detection. The experimental analysis shows that out of the four models, the average F1 score for all the classes is highest for SSD_Mobilenet_v1 _Ppn_Coco model.

Keywords

Electronic travel aids Sensor Assistive technology Visually impaired Ultrasonic sensor Raspberry Pi 

References

  1. 1.
    Hoydal, T.O., Zelano, J.A.: An alternative mobility aid for the blind: the ‘ultrasonic cane’. In: Proceedings of the 1991 IEEE Seventeenth Annual Northeast Bioengineering Conference. IEEE (1991)Google Scholar
  2. 2.
    Bouhamed, S.A., Eleuch, J.F., Kallel, I.K., Masmoudi, D.S.: New electronic cane for visually impaired people for obstacle detection and recognition. In: 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012), pp. 416–420. IEEE, July 2012Google Scholar
  3. 3.
    Alshbatat, N., Ilah, A.: Automated mobility and orientation system for blind or partially sighted people. Int. J. Smart Sens. Intell. Syst. 6(2) (2013)Google Scholar
  4. 4.
    Kumar, K., Champaty, B., Uvanesh, K., Chachan, R., Pal, K., Anis, A.: Development of an ultrasonic cane as a navigation aid for the blind people. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 475–479. IEEE, July 2014Google Scholar
  5. 5.
    Benjamin Jr, J.M., Ali, N.A.: An improved laser cane for the blind. In: Quantitative Imagery in the Biomedical Sciences II, Vol. 40. International Society for Optics and Photonics (1974)Google Scholar
  6. 6.
    Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 1, 25–33 (2006)CrossRefGoogle Scholar
  7. 7.
    Misra, P., Enge, P.: Global Positioning System: Signals, Measurements and Performance, 2nd edn (2006)Google Scholar
  8. 8.
    Mouly, M., Pautet, M.-B., Foreword By-Haug, T.: The GSM System for Mobile Communications. Telecom Publishing (1992)Google Scholar
  9. 9.
    Rozenberg, L. (ed.): Physical Principles of Ultrasonic Technology, vol. 1. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Bahadir, S.K., Koncar, V., Kalaoglu, F.: Wearable obstacle detection system fully integrated to textile structures for visually impaired people. Sens. Actuators, A 179, 297–311 (2012)CrossRefGoogle Scholar
  11. 11.
    Lee, Y.H., Medioni, G.: RGB-D camera based navigation for the visually impaired. In: Proceedings of the RSS (2011)Google Scholar
  12. 12.
    Mahalle, S.: Ultrasonic spectacles & waist-belt for visually impaired & blind person. IOSR J. Eng. 4, 46–49 (2014)CrossRefGoogle Scholar
  13. 13.
    Xiang, K., Wang, K., Fei, L., Yang, K.: Store sign text recognition for wearable navigation assistance system. In: Journal of Physics: Conference Series, vol. 1229, no. 1, p. 012070. IOP Publishing, May 2019Google Scholar
  14. 14.
    Patil, K., Jawadwala, Q., Shu, F.C.: Design and construction of electronic aid for visually impaired people. IEEE Trans. Hum.-Mach. Syst. 48(2), 172–182 (2018)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Kuchenbecker, K.J.: HALO: haptic alerts for low-hanging obstacles in white cane navigation. In: 2012 IEEE Haptics Symposium (HAPTICS). IEEE (2012)Google Scholar
  16. 16.
    Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)Google Scholar
  17. 17.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  18. 18.
    Hui, J.: SSD object detection: single shot multibox detector for real-time processing (2018). https://medium.com/@jonathan_hui/ssd-object-detection-single-shot-multibox-detector-for-real-time-processing-9bd8deac0e06. Accessed 14 Mar 2018
  19. 19.
    Tsang, S.-H.: Review: MobileNetV2 - light weight model (image classification) (2019). https://towardsdatascience.com/review-mobilenetv2-light-weight-model-image-classification-8febb490e61c. Accessed 19 May 2019
  20. 20.
    Kayukawa, S., et al.: BBeep: a sonic collision avoidance system for blind travellers and nearby pedestrians. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, p. 52. ACM, April 2019Google Scholar
  21. 21.
    Megalingam, R.K., Vishnu, S., Sasikumar, V., Sreekumar, S.: Autonomous path guiding robot for visually impaired people. In: Mallick, P.K., Balas, V.E., Bhoi, A.K., Zobaa, A.F. (eds.) Cognitive Informatics and Soft Computing. AISC, vol. 768, pp. 257–266. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-0617-4_25CrossRefGoogle Scholar
  22. 22.
    Aladren, A., López-Nicolás, G., Puig, L., Guerrero, J.J.: Navigation assistance for the visually impaired using RGB-D sensor with range expansion. IEEE Syst. J. 10(3), 922–932 (2014)CrossRefGoogle Scholar
  23. 23.
    Balakrishnan, G.N.R.Y.S., Sainarayanan, G., Nagarajan, R., Yaacob, S.: A stereo image processing system for visually impaired. Int. J. Sig. Process. 2(3), 136–145 (2006)Google Scholar
  24. 24.
    Ran, L., Helal, S., Moore, S.: Drishti: an integrated indoor/outdoor blind navigation system and service. In: 2004 Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications. IEEE (2004)Google Scholar
  25. 25.
    Sjöström, C.: Virtual haptic search tools-the white cane in a haptic computer interface. In: Assistive Technology: Added Value to the Quality of Life, AAATE, vol. 1, pp. 124–128 (2001)Google Scholar
  26. 26.
  27. 27.
    Bourne, R.R., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health 5(9), e888–97 (2017)CrossRefGoogle Scholar
  28. 28.
    Cui, Z.: Text scanner and touch reader for visually-impaired users (2019)Google Scholar
  29. 29.
    Ravindran, N.M., Cheraghi, S.A.: GuideCall: a remote video call assistance for blind and visually impaired people (2019)Google Scholar
  30. 30.
    Chandrasekaran, R., Dhivya, J.A., Thamizhvani, T.R., Hemalatha, R.J.: Smart aid for the blind. Indian J. Public Health Res. Dev. 10(5), 819–821 (2019)CrossRefGoogle Scholar
  31. 31.
    Mcnary, S., Hunter, A.: Wearable device data for criminal investigation. In: Wang, G., Chen, J., Yang, L.T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 60–71. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05345-1_5CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science EngineeringBennett UniversityGreater NoidaIndia

Personalised recommendations