Advertisement

Condition Monitoring of Motorised Devices for Smart Infrastructure Capabilities

  • Pritesh MistryEmail author
  • Phil Lane
  • Paul Allen
  • Hussain Al-Aqrabi
  • Richard Hill
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

This paper presents a signal processing methodology based on fast Fourier transform for the early fault detection of electrically motorised devices. We used time-stamped, current draw data provided by Network Rail, UK, to develop a methodology that may identify imminent faults in point machine operations. In this paper we describe the data, preprocessing steps and methodology developed that can be used with similar motorised devices as a means of identifying potential fault occurrences. The novelty of our method is that it does not rely on labelled data for fault detection. This method could be integrated into smart city infrastructure and deployed to provide automated asset maintenance management capabilities.

Keywords

Condition monitoring Fault detection Point machines Fast Fourier transform Smart city 

References

  1. 1.
    Asada, T., Roberts, C., Koseki, T.: An algorithm for improved performance of railway condition monitoring equipment: alternating-current point machine case study. Transp. Res. Part C Emerg. Technol. 30, 81–92 (2013)CrossRefGoogle Scholar
  2. 2.
    Bian, C., et al.: Degradation detection method for railway point machines. arXiv preprint arXiv:1809.02349 (2018)
  3. 3.
    Chen, T.M.: Smart grids, smart cities need better networks [Editor’s Note]. IEEE Netw. 24(2), 2–3 (2010).  https://doi.org/10.1109/MNET.2010.5430136. ISSN 0890-8044CrossRefGoogle Scholar
  4. 4.
    Garcia, F.P., Pedregal, D.J., Roberts, C.: Time series methods applied to failure prediction and detection. Reliab. Eng. Syst. Saf. 95(6), 698–703 (2010). ISSN 0951-8320CrossRefGoogle Scholar
  5. 5.
    Harrison, C., et al.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010).  https://doi.org/10.1147/JRD.2010.2048257. ISSN 0018-8646CrossRefGoogle Scholar
  6. 6.
    Knime (2018). https://www.knime.com/. Accessed 2 Aug 2018
  7. 7.
    Barrionuevo, J.M., Berrone, P., Ricart, J.: Smart cities, sustainable progress: opportunities for urban development. IESE Insight 50–57 (2012).  https://doi.org/10.15581/002.ART-2152
  8. 8.
    Garcia Marquez, F.P., Roberts, C., Tobias, A.M.: Railway point mechanisms: condition monitoring and fault detection. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 224(1), 35–44 (2010)CrossRefGoogle Scholar
  9. 9.
    Marsal, L., Colomer, J., Melendez, J.: Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technol. Forecast. Soc. Chang. 90, 611–622 (2014).  https://doi.org/10.1016/j.techfore.2014.01.012CrossRefGoogle Scholar
  10. 10.
    R (2018). https://www.r-project.org/. Accessed 2 Aug 2018
  11. 11.
    Sa, J., et al.: Replacement condition detection of railway point machines using an electric current sensor. Sensors 17(2), 263 (2017)CrossRefGoogle Scholar
  12. 12.
    Vileiniskis, M., Remenyte-Prescott, R., Rama, D.: A fault detection method for railway point systems. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 230(3), 852–865 (2016).  https://doi.org/10.1177/0954409714567487CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pritesh Mistry
    • 1
    Email author
  • Phil Lane
    • 1
  • Paul Allen
    • 1
  • Hussain Al-Aqrabi
    • 1
  • Richard Hill
    • 1
  1. 1.School of Computing and EngineeringUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations