Advertisement

A Consortium Blockchain-Based Model for Data Sharing in Internet of Vehicles

  • Qifan Wang
  • Lei Zhou
  • Zhe Tang
  • Guojun WangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

Internet of Vehicles (IoV) provides a broad range of services of data exchange of traffic information to improve the effectiveness of smart vehicles. However, the security issues in Internet of Vehicles are multifaceted: data theft, message tampering and forgery, etc., which results in possibilities of incorrect data sharing. To address above issues, we proposed an efficient blockchain-based data sharing model. In this paper, we leverage the consortium blockchain and enhanced Diffie-Hellman algorithm to build a trust decentralized verifying mechanism, which is designed to secure the data sharing process in IoV. To improve the performance, we optimize the consensus mechanism on our blockchain-based system by decreasing the consensus delay without affecting the correctness of consensus verifying. The security analysis and simulation experiments show that our model meets security requirements and the overhead from our system is acceptable for IoV.

Keywords

Internet of Vehicles Consortium blockchain Access policy PBFT Algorithm Diffie-Hellman key agreement algorithm 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61632009, in part by the Guangdong Provincial Natural Science Foundation under Grant 2017A030308006, and in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01.

References

  1. 1.
    Contreras-Castillo, J., Zeadally, S., Guerrero-Ibañez, J.A.: Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J. 5(5), 3701–3709 (2017)CrossRefGoogle Scholar
  2. 2.
    Wang, Q., Duan, G., Luo, E., Wang, G.: Research on internet of vehicles’ privacy protection based on tamper-proof with ciphertext. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 42–55. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72389-1_4CrossRefGoogle Scholar
  3. 3.
    Huang, X., Xu, C., Wang, P., Liu, H.: LNSC: a security model for electric vehicle and charging pile management based on blockchain ecosystem. IEEE Access 6, 13565–13574 (2018)CrossRefGoogle Scholar
  4. 4.
    Kang, J., Yu, R., Huang, X., Zhang, Y.: Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst. 19(8), 2627–2637 (2017)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Qi, F., Tang, Z.: Traceable and complete fine-grained revocable multi-authority attribute-based encryption scheme in social network. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 87–92. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72389-1_8CrossRefGoogle Scholar
  6. 6.
    Zeadally, S., Hunt, R., Chen, Y.S., Irwin, A., Hassan, A.: Vehicular ad hoc networks (VANETS): status, results, and challenges. Telecommun. Syst. 50(4), 217–241 (2012)CrossRefGoogle Scholar
  7. 7.
    Varshney, N., Roy, T., Chaudhary, N.: Security protocol for VANET by using digital certification to provide security with low bandwidth. In: 2014 International Conference on Communication and Signal Processing, pp. 768–772. IEEE (2014)Google Scholar
  8. 8.
    Li, L., et al.: CreditCoin: a privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Trans. Intell. Transp. Syst. 19(7), 2204–2220 (2018)CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Chen, X.: Data security sharing and storage based on a consortium blockchain in a vehicular adhoc network. IEEE Access 7, 58241–58254 (2019)CrossRefGoogle Scholar
  10. 10.
    Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)Google Scholar
  11. 11.
    Gan, J., Li, Q., Chen, Z., Zhang, C.: Improvement of blockchain practical Byzantine fault tolerance consensus algorithm. J. Comput. Appl. 39(7), 2148–2155 (2019)Google Scholar
  12. 12.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_12CrossRefGoogle Scholar
  13. 13.
    Lin, J., Li, M., Yang, D., Xue, G., Tang, J.: Sybil-proof incentive mechanisms for crowdsensing. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)Google Scholar
  14. 14.
    Huang, W., Li, P., Zhang, T.: RSUs placement based on vehicular social mobility in VANETs. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1255–1260. IEEE (2018)Google Scholar
  15. 15.
    Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenticated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 255–264. ACM (2001)Google Scholar
  16. 16.
    Johnston, A.M., Gemmell, P.S.: Authenticated key exchange provably secure against the man-in-the-middle attack. J. Cryptol. 15(2), 139–148 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of knowledge secure under concurrent man-in-the-middle attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_14CrossRefGoogle Scholar
  18. 18.
    Guan, Z., et al.: Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities. IEEE Commun. Mag. 56(7), 82–88 (2018)CrossRefGoogle Scholar
  19. 19.
    Royer, E.M., Toh, C.K.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Pers. Commun. 6(2), 46–55 (1999)CrossRefGoogle Scholar
  20. 20.
    Samad, A., Alam, S., Mohammed, S., Bhukhari, M.: Internet of vehicles (IoV) requirements, attacks and countermeasures. In: Proceedings of 12th INDIACom; INDIACom-2018; 5th International Conference on “Computing for Sustainable Global Development" IEEE Conference, New Delhi (2018)Google Scholar
  21. 21.
    Sun, Y., et al.: Security and privacy in the internet of vehicles. In: 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), pp. 116–121. IEEE (2015)Google Scholar
  22. 22.
    Abassi, R.: Vanet security and forensics: challenges and opportunities. Wiley Interdiscip. Rev.: Forensic Sci. 1(2), e1324 (2019)Google Scholar
  23. 23.
    Zeng, Y., Zhang, R.: Wireless information surveillance via proactive eavesdropping with spoofing relay. IEEE J. Sel. Top. Sig. Process. 10(8), 1449–1461 (2016)CrossRefGoogle Scholar
  24. 24.
    Azees, M., Vijayakumar, P., Deboarh, L.J.: EAAP: efficient anonymous authentication with conditional privacy-preserving scheme for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 18(9), 2467–2476 (2017)CrossRefGoogle Scholar
  25. 25.
    Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32(3), 78–83 (2018)CrossRefGoogle Scholar
  26. 26.
    Dorri, A., Steger, M., Kanhere, S.S., Jurdak, R.: Blockchain: a distributed solution to automotive security and privacy. IEEE Commun. Mag. 55(12), 119–125 (2017)CrossRefGoogle Scholar
  27. 27.
    Bahsoun, J.P., Guerraoui, R., Shoker, A.: Making BFT protocols really adaptive. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 904–913. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Computer ScienceGuangzhou UniversityGuangzhouChina

Personalised recommendations