Advertisement

Context-Aware Personalized POI Sequence Recommendation

  • Jing Chen
  • Wenjun JiangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

The Point Of Interest (POI) sequence recommendation applies to scenarios like itinerary and travel route planning which belongs to the class of NP-hard problem. What’s more, the external environment like the weather, time can affect the user’s check-in behavior such as people prefer to check-in in ice cream shop when the temperature is higher. We propose an algorithm to solve these problems that called Context-Aware Personalized POI sequence Recommendation based on reinforcement learning (CAPR for short). First, we model the users dynamic preferences that incorporate contextual information associated with the users’ sequence of check-ins. Then we use the Monte Carlo Tree Search algorithm to select the user-satisfied POI in different environments. What’s more, we can get the context-aware personalized POI sequence under the specified time limit. Finally, we test the proposed algorithm using an open source dataset. The experimental results show that the weather and time context can improve the accuracy of the recommendation. Our algorithm can improve the effectiveness of travel recommendations.

Keywords

Context-aware Reinforcement learning POI sequence Recommendation Personality 

Notes

Acknowledgments

This research was supported by NSFC grant 61632009 and Outstanding Young Talents Training Program in Hunan University 531118040173.

References

  1. 1.
    Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48157-5_29CrossRefGoogle Scholar
  2. 2.
    Baral, R., Iyengar, S., Li, T., Balakrishnan, N.: Close: contextualized location sequence recommender. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 470–474. ACM (2018)Google Scholar
  3. 3.
    Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59(1–3), 413–420 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Browning, R.C., Baker, E.A., Herron, J.A., Kram, R.: Effects of obesity and sex on the energetic cost and preferred speed of walking. J. Appl. Physiol. 100(2), 390–398 (2006)CrossRefGoogle Scholar
  5. 5.
    Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: Tripplanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans. Intell. Transp. Syst. 16(3), 1259–1273 (2014)CrossRefGoogle Scholar
  6. 6.
    Chen, D., Ong, C.S., Xie, L.: Learning points and routes to recommend trajectories. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 2227–2232. ACM (2016)Google Scholar
  7. 7.
    De Choudhury, M., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel, R., Yu, C.: Automatic construction of travel itineraries using social breadcrumbs. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, pp. 35–44. ACM (2010)Google Scholar
  8. 8.
    Debnath, M., Tripathi, P.K., Biswas, A.K., Elmasri, R.: Preference aware travel route recommendation with temporal influence. In: Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-Based Services and Social Networks, p. 2. ACM (2018)Google Scholar
  9. 9.
    Enzenberger, M., Muller, M., Arneson, B., Segal, R.: Fuego-an open-source framework for board games and Go engine based on Monte Carlo tree search. IEEE Trans. Comput. Intell. AI Games 2(4), 259–270 (2010)CrossRefGoogle Scholar
  10. 10.
    Ge, Y., Liu, Q., Xiong, H., Tuzhilin, A., Chen, J.: Cost-aware travel tour recommendation. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 983–991. ACM (2011)Google Scholar
  11. 11.
    He, L., Wu, F.: A time-context-based collaborative filtering algorithm. In: 2009 IEEE International Conference on Granular Computing, pp. 209–213. IEEE (2009)Google Scholar
  12. 12.
    Jiang, W., Wu, J., Wang, G.: On selecting recommenders for trust evaluation in online social networks. ACM Trans. Internet Technol. (TOIT) 15(4), 14 (2015)CrossRefGoogle Scholar
  13. 13.
    Jiang, W., Wu, J., Wang, G., Zheng, H.: Fluidrating: a time-evolving rating scheme in trust-based recommendation systems using fluid dynamics. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pp. 1707–1715. IEEE (2014)Google Scholar
  14. 14.
    Jiang, W., Wu, J., Wang, G., Zheng, H.: Forming opinions via trusted friends: time-evolving rating prediction using fluid dynamics. IEEE Trans. Comput. 65(4), 1211–1224 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006).  https://doi.org/10.1007/11871842_29CrossRefGoogle Scholar
  16. 16.
    Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte-Carlo search. University of Tartu, Estonia, Technical report 1 (2006)Google Scholar
  17. 17.
    Lee, W.P., Lee, K.H.: Making smartphone service recommendations by predicting users’ intentions: a context-aware approach. Inf. Sci. 277, 21–35 (2014)CrossRefGoogle Scholar
  18. 18.
    Li, J., Deng, H., Jiang, W.: Secure vibration control of flexible arms based on operators’ behaviors. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 420–431. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72389-1_34CrossRefGoogle Scholar
  19. 19.
    Li, M., Jiang, W., Li, K.: Recommendation systems in real applications: algorithm and parallel architecture. In: Wang, G., Ray, I., Alcaraz Calero, J.M., Thampi, S.M. (eds.) SpaCCS 2016. LNCS, vol. 10066, pp. 45–58. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49148-6_5CrossRefGoogle Scholar
  20. 20.
    Lim, K.H., Chan, J., Karunasekera, S., Leckie, C.: Personalized itinerary recommendation with queuing time awareness. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334. ACM (2017)Google Scholar
  21. 21.
    Majid, A., Chen, L., Mirza, H.T., Hussain, I., Chen, G.: A system for mining interesting tourist locations and travel sequences from public geo-tagged photos. Data Knowl. Eng. 95, 66–86 (2015)CrossRefGoogle Scholar
  22. 22.
    Manotumruksa, J., Macdonald, C., Ounis, I.: A contextual attention recurrent architecture for context-aware venue recommendation. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 555–564. ACM (2018)Google Scholar
  23. 23.
    Peters, M., Frehse, J., Buhalis, D., et al.: The importance of lifestyle entrepreneurship: a conceptual study of the tourism industry (2009)Google Scholar
  24. 24.
    Robusto, C.C.: The Cosine-Haversine formula. Am. Math. Monthly 64(1), 38–40 (1957)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shi, Y., Jiang, W.: Point-of-interest recommendations: capturing the geographical influence from local trajectories. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), pp. 1122–1129. IEEE (2017)Google Scholar
  26. 26.
    Trattner, C., Oberegger, A., Eberhard, L., Parra, D., Marinho, L.B., et al.: Understanding the impact of weather for POI recommendations. In: RecTour@ RecSys, pp. 16–23 (2016)Google Scholar
  27. 27.
    Villegas, N.M., Müller, H.A.: Managing dynamic context to optimize smart interactions and services. In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS, vol. 6400, pp. 289–318. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16599-3_18CrossRefGoogle Scholar
  28. 28.
    Wang, G., Jiang, W., Wu, J., Xiong, Z.: Fine-grained feature-based social influence evaluation in online social networks. IEEE Trans. Parallel Distrib. Syst. 25(9), 2286–2296 (2013)CrossRefGoogle Scholar
  29. 29.
    Wang, X., Leckie, C., Chan, J., Lim, K.H., Vaithianathan, T.: Improving personalized trip recommendation by avoiding crowds. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 25–34. ACM (2016)Google Scholar
  30. 30.
    Xu, Z., Chen, L., Chen, G.: Topic based context-aware travel recommendation method exploiting geotagged photos. Neurocomputing 155, 99–107 (2015)CrossRefGoogle Scholar
  31. 31.
    Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 363–372. ACM (2013)Google Scholar
  32. 32.
    Zhang, C., Liang, H., Wang, K., Sun, J.: Personalized trip recommendation with POI availability and uncertain traveling time. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 911–920. ACM (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina

Personalised recommendations