Multilevel Quantum Sperm Whale Metaheuristic for Gray-Level Image Thresholding

  • Siddhartha BhattacharyyaEmail author
  • Sandip Dey
  • Jan Platos
  • Vaclav Snasel
  • Tulika Dutta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1087)


Image thresholding is a fundamental step in image segmentation. A clever selection of thresholds is a vital step to achieve effective segmentation of images. In this article, we present a new quantum metaheuristic algorithm inspired by the behavior of sperm whales for optimal thresholding of gray-level images. The algorithm is built using many-valued quantum computing principles which offer greater computational advantages. Results are demonstrated on four test images with three threshold levels. The performance of the proposed algorithm has been compared with the qubit encoded quantum-inspired simulated annealing algorithm and the classical sperm whale algorithm with respect to the optimal fitness values and the computational time. Friedman test has been carried out with the competing algorithms to establish the supremacy of the proposed technique. Experimental results indicate the superiority of the proposed method in comparison with the competing methods.


Image thresholding Sperm whale optimization algorithm Multilevel quantum systems Qudits 



This work was supported by the ESF in “Science without borders” project, reg. nr. CZ.02.2.69/0.0/0.0/16_027/0008463 within the Operational Programme Research, Development and Education.


  1. 1.
    D.L. Pham, C. Xu, J.L. Prince, Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)CrossRefGoogle Scholar
  2. 2.
    H.F. Ng, Automatic thresholding for defect detection. Pattern Recogn. Lett. 27(14), 1644–1649 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.L. Chen, Night time vehicle light detection on a moving vehicle using image segmentation and analysis techniques. WSEAS Trans. Comput. 8(3), 506–515 (2009)Google Scholar
  4. 4.
    F. Glover, F.W. Kochenberger, A. Gary (eds.), Handbook of Metaheuristics (Kluwer Academic Publishers, Dordrecht, 2003)Google Scholar
  5. 5.
    P. Mesejo, O.I. Nez, O. Cordon, S. Cagnoni, A survey on image segmentation using metaheuristic-based deformable models: State of the art and critical analysis. Appl. Soft Comput. 44(3), 1–29 (2016)CrossRefGoogle Scholar
  6. 6.
    D.B. Fogel (eds.) Evolutionary Computation: The Fossil Record (IEEE Press, New York, 1998) ISBN 0-7803-3481-7Google Scholar
  7. 7.
    M. Maitra, A. Chatterjee, A hybrid cooperative-comprehensive learning based pso algorithm for image segmentation using multilevel thresholding. Expert Syst. Appl. 34, 1341–1350 (2008)CrossRefGoogle Scholar
  8. 8.
    S. De, F. Haque, Multilevel image segmentation using modified particle swarm optimization, in Intelligent Analysis of Multimedia Information, ed. by S. Bhattacharyya, H. Bhaumik, S. De, S. Klepac (IGI Global, 2015), pp. 106–142Google Scholar
  9. 9.
    S. Kaur, P. Kaur, An edge detection technique with image segmentation using ant colony optimization: A review, in 2016 Online International Conference on Green Engineering and Technologies (IC-GET) (2016), pp. 1–5Google Scholar
  10. 10.
    P.D. Sathya, R. Kayalvizhi, Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst. Appl. 38(12), 15549–15564 (2011)CrossRefGoogle Scholar
  11. 11.
    B. Akay, A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13, 3066–3091 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Ebrahimi, E. Khamehchi, Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems. J. Nat. Gas Sci. Eng. 26, 211–222 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Fiszelew, P. Britos, A. Ochoa, H. Merlino, F. Fernndez, R. Garca-Martnez, Finding Optimal Neural Network Architecture Using Genetic Algorithms, in Advances in Computer Science and Engineering Research in Computing Science, vol. 27, ed. by S. Torres, I. Lopez, H. Calvo, pp. 15–24Google Scholar
  14. 14.
    M. Abbasgholipour, M. Omid, A. Keyhani, S.S. Mohtasebi, Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions. Expert Syst. Appl. 38(4), 3671–3678 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Kaur, H.P. Singh, A. Bhardwaj, Analysis of economic load dispatch using genetic algorithm. Int. J. Appl. Innov. Eng. Manage. (IJAIEM) 3(3), 240–246 (2014)Google Scholar
  16. 16.
    S. Dey, S. Bhattacharyya, U. Maulik, Quantum inspired genetic algorithm and particle swarm optimization using chaotic map model based interference for gray level image thresholding. Swarm Evol. Comput. 15, 38–57 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Dey, I. Saha, U. Maulik, S. Bhattacharyya, New quantum inspired meta-heuristic methods for multi-level thresholding, in Proceedings of 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2013), pp. 1236–1240Google Scholar
  18. 18.
    S. Dey, I. Saha, S. Bhattacharyya, U. Maulik, Multi-level thresholding using quantum inspired meta-heuristics. Knowl.-Based Syst. 67, 373–400 (2014)CrossRefGoogle Scholar
  19. 19.
    S. De, S. Bhattacharyya, P. Dutta, Efficient gray level image segmentation using an optimized musig (OptiMUSIG) activation function. Int. J. Parallel Emergent Distrib. Syst. 26(1), 1–39 (2010)CrossRefGoogle Scholar
  20. 20.
    X. Ren, An optimal image thresholding using genetic algorithm, in Proceedings of 2009 International Forum on Computer Science-Technology and Applications Chongqing (2009), pp. 169–172Google Scholar
  21. 21.
    S. Dey, S. Bhattacharyya, U. Maulik, New quantum inspired meta-heuristic techniques for multi-level colour image thresholding. Appl. Soft Comput. 46, 677–702 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Dey, S. Bhattacharyya, U. Maulik, Efficient quantum inspired meta-heuristics for multi-level true colour image thresholding. Appl. Soft Comput. 56, 472–513 (2017)CrossRefGoogle Scholar
  23. 23.
    V. Tkachuk, Quantum Genetic Algorithm Based on Qutrits and Its Application. Hindawi Mathematical Problems in Engineering (Article ID 8614073) (2018)Google Scholar
  24. 24.
    J. Kittler, J. Illingworth, Minimum error thresholding. Pattern Recogn. 19(1), 41–47 (1986)CrossRefGoogle Scholar
  25. 25.
    H. Wang, J. Liu, J. Zhi, C. Fu, The improvement of quantum genetic algorithm and its application on function optimization. Mathematical Problems in Engineering (Article ID 730749) (2013)Google Scholar
  26. 26.
    R. Nowotniak, J. Kucharski, Higher-order quantum inspired genetic algorithms, in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems (FedCSIS 2014), Poland (2014), pp. 465–470Google Scholar
  27. 27.
    H. Miao, H. Wang, Z. Deng, Quantum genetic algorithm and its application in power system reactive power optimization, in Proceedings of the 2009 International Conference on Computational Intelligence and Security (CIS 2009), Beijing China (2009), pp. 107–111Google Scholar
  28. 28.
    M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 31(200), 675–701 (1937)CrossRefGoogle Scholar
  29. 29.
    M. Friedman, A comparison of alternative tests of significance for the problem of \(m\) rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Siddhartha Bhattacharyya
    • 1
    Email author
  • Sandip Dey
    • 2
  • Jan Platos
    • 1
  • Vaclav Snasel
    • 1
  • Tulika Dutta
    • 3
  1. 1.VSB Technical University of OstravaOstravaCzech Republic
  2. 2.Sukanta MahavidyalayaJalpaiguriIndia
  3. 3.University Institute of Technology, BUBurdwanIndia

Personalised recommendations