Skip to main content

Magnetic, Electronic, and Optical Properties of Perovskite Materials

  • Chapter
  • First Online:
Revolution of Perovskite

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Currently, lead halide perovskite materials involving organic-inorganic hybrids and all-inorganic ones have attached more and more attention for their adhibition in photovoltaic devices, because of the unique properties like high light absorption coefficient, tunable bandgap, long carrier lifetime, and carrier diffusion length. In addition, it can be clearly seen that perovskite materials have unusual magnetic properties and excellent electronic properties. Herein, the structure of B-site substituted perovskite oxides are reviewed, and magnetic properties of A2BʹB″X6 are controlled by modifying their cations, such as magnetic order, leading to a wide range of possibly and interesting useful new materials. We review the perovskite manganite with a strongly correlative electronic system, and the strong interactions within electron results in sophisticated electronic properties and magnetic properties. Electronic structure and unique characteristics of halide perovskites such as the special Pb orbit and the grain boundaries of electrically benign are surveyed. What’s more, the suitable and excellent optical properties of kinds of perovskites with mixed compounds for solar cells, light-emitting diodes, and other applications are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahadevan Shanthi (1996) Sarma, Estimates of electronic interaction parameters for LaMO3 compounds (M = Ti–Ni) from ab initio approaches. Phys Rev B: Condens Matter Mater Phys 54:11119

    Google Scholar 

  2. Cai MQ, Tan X, Yang GW, Wen LQ, Wang LL, Hu WY, Wang YG (2008) Giant Magneto-optical kerr effects in ferromagnetic perovskite BiNiO3 with half- metallic state. J Phys Chem C 112:16638

    CAS  Google Scholar 

  3. King G, Woodward PM (2010) Cation ordering in perovskites. J Mater Chem 20:5785

    CAS  Google Scholar 

  4. Philipp JB, Majewski P, Alff L, Erb A, Gross R, Graf T (2003) Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A = Sr, Ba, and Ca). Phys Rev B 68:144431

    Google Scholar 

  5. Morrow R, Mishra R, Restrepo OD, Ball MR, Windl W, Wurmehl S (2013) Independent ordering of two interpenetrating magnetic sublattices in the double perovskite Sr2CoOsO6. J Am Chem Soc 135:18824

    CAS  Google Scholar 

  6. Dos Santos-García AJ, Ritter C, Solana-Madruga E (2013) S_aez-Puche R, Magnetic and crystal structure determination of Mn2FeSbO6 double perovskite. J Phys: Condens Matter 25:206004

    Google Scholar 

  7. S_anchez-Benítez J, Martínez-Lope MJ, Alonso JA, García-Mu ~ noz JL Magnetic and structural features of the NdNi1−xMnxO3 perovskite series investigated by neutron diffraction. J Phys Condens Matter 23, 226001 (2011)

    Google Scholar 

  8. Makowski SJ, Rodgers JA, Henry PF, Attfield JP, Bos J-WG (2008) Coupled spin ordering in the Ln2LiRuO6 double perovskites. Chem Mater 21, 264

    Google Scholar 

  9. Raevski IP, Kubrin SP, Raevskaya SI, V Titov V, Sarychev DA, Malitskaya MA et al (2009) Experimental evidence of the crucial role of nonmagnetic Pb cations in the enhancement of the Néel temperature in perovskite Pb1−xBaxFe1/2Nb1/2O3. Energy Environ Phys Rev B 80:24108

    Google Scholar 

  10. Karppinen M, Yamauchi H (2005) In: Narlikar AV (ed) Frontiers in magnetic materials, vol 84, p 153. Springer, Berlin

    Google Scholar 

  11. Mclaughlin AC (2008) Simultaneous Jahn-Teller distortion and magnetic order in the double perovskite Ba2154SmMoO6. Phys Rev B 78:132404

    Google Scholar 

  12. Cussen EJ, Lynham DR, Rogers J (2006) Magnetic order arising from structural distortion: structure and magnetic properties of Ba2LnMoO6. Chem Mater 18:2855

    CAS  Google Scholar 

  13. Cussen EJ, Battle PD (2003) The influence of structural disorder on the magnetic properties of Sr2Fe1-xGaxTaO6. J Mater Chem 13:1210

    CAS  Google Scholar 

  14. Triana CA, Corredor LT, Landínez T_ellez DA, Roa-Rojas J (2011) High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite. Phys B Condens Matter 407:3150

    Google Scholar 

  15. Wang R, Mahesh R, Itoh M (1999) Hydrostatic-pressure-induced magnetic structure transformation in polycrystalline La0.5Ca0.5MnO3-δ. Phys Rev B 60:14513

    Google Scholar 

  16. Battle PD, Goodenough JB, Price R (1983) The crystal structures and magnetic properties of Ba2LaRuO6 and Ca2LaRuO6. J Solid State Chem 46:234

    CAS  Google Scholar 

  17. Qian T, Li G, Zhang T, Zhou TF, Kang XW, Li XG (2007) Surface spin-glass behavior in La2/3Sr1/3MnO3 nanoparticles. Phys Rev 76:014433

    Google Scholar 

  18. Zhu T, Shen BG, Sun JR, Zhao HW, Zhan WS (2001) Surface spin-glass behavior in La2/3Sr1/3MnO3 nanoparticles. Appl Phys Lett 78:3863

    CAS  Google Scholar 

  19. Arodhiya SK, Placke A, Kocher J (2017) Core-Shell magnetic structure of La1 − xSrxMnO3 + δ nanocrystallites. Intermag 53:11

    Google Scholar 

  20. Curiale J, Granada M, Troiani HE, S_anchez RD, Leyva AG, Levy P, Samwer K (2009) Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl Phys Lett 95:043106

    Google Scholar 

  21. Zhang T, Li G, Qian T, Qu JF, Li XG (2006) Effect of particle size on the structure and magnetic properties of La0.6Pb0.4MnO3 nanoparticles. J Appl Phys 100:094324 (2006)

    Google Scholar 

  22. Tlili R, Omri A, Bekri M, Bejar M, Dhahri E ( 2016) Hlil effect of Ga substitution on magnetocaloric effect in La0.7(Ba, Sr)0.3Mn1-xGaxO3 polycrystalline at room temperature. EK.: J Magn Magn Mater 399:143 (2016)

    Google Scholar 

  23. Oumezzine E, Hcini S, Baazaoui M, Hlil EK, Oumezzine M (2015) Structural, magnetic and magnetocaloric properties of Zn0.6 − xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Pow. Technol. 278:189–195

    Google Scholar 

  24. Koutselas IB, Ducasse L, Papavassiliou GC (1996) Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J Phys: Condens Matter 8:1217

    CAS  Google Scholar 

  25. Walsh A, Watson GW (2005) The origin of the stereochemically active Pb (II) lone pair: DFT calculations on PbO and PbS. J Solid State Chem 178:1422

    Google Scholar 

  26. Filip MR, Eperon GE, Snaith HJ, Giustino FN (2014) Steric engineering of metal-halide perovskites with tunable optical band gaps. Commun 5:5757

    Google Scholar 

  27. Yin W-J, Yang J-H, Kang J, Yan Y, Wei S-H (2015) Halide perovskite materials for solar cells:a theoretical review. J Mater Chem A 3:8926

    CAS  Google Scholar 

  28. Milot RL, Eperon GE, Snaith HJ, Johnston MB, Herz LM (2015) Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater 25:6218

    CAS  Google Scholar 

  29. Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D (2014) Why Lead Methylammonium Tri-Iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett 14:1000

    CAS  Google Scholar 

  30. Yun JS, Ho-Baillie A, Huang S, Woo SH, Heo Y, Seidel J, Huang F, Cheng Y-B, Green MA (2015) Benefit of grain boundaries in organic—inorganic halide planar perovskite solar cells. J Phys Chem Lett 6:87

    Google Scholar 

  31. Miyasaka T (2015) Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices. Chem Lett 44:720

    CAS  Google Scholar 

  32. Wang Q, Bi C (2015) Huang, Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. J Nano Energy 15:275

    CAS  Google Scholar 

  33. Yin W-J, Shi T, Yan Y (2014) Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Adv Mater 26:4653

    CAS  Google Scholar 

  34. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-Hole diffusion lengths exceeding1 micrometer in an organometal trihalide perovskite absorber. Science 342:341

    CAS  Google Scholar 

  35. Xing G, Mathews N, Sun S, Lim SS, Lam YM (2013) Long-Range balanced electron and Hole-Transport lengths in Organic-Inorganic CH3NH3PbI3. Science 342:344

    CAS  Google Scholar 

  36. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26:1584

    CAS  Google Scholar 

  37. Sheng R, Ho-Baillie A, Huang S, Chen S, Wen X, Hao X, Green MA (2015) Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J Phys Chem C 119:3545

    CAS  Google Scholar 

  38. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982

    CAS  Google Scholar 

  39. Rehman W, Milot RL, Eperon GE, Wehrenfennig C, Boland JL, Snaith HJ, Johnston MB, Herz LM (2015) Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv Mater 27:7938

    CAS  Google Scholar 

  40. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB (2014) Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061

    CAS  Google Scholar 

  41. Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng XC, Huang J (2015) High-Gain and Low-Driving-Voltage photodetectors based on organolead triiodide perovskites. Adv Mater 27:1912

    CAS  Google Scholar 

  42. Saidaminov MI, Adinolfi V, Comin R, Abdelhady AL, Peng W, Dursun I, Yuan M, Hoogland S, Sargent EH, Bakr OM (2015) Planar-integrated single-crystalline perovskite Photodetectors. Nat Commun 6:8724

    CAS  Google Scholar 

  43. Edri E, Kirmayer S, Cahen D, Hodes G (2013) High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J Phys Chem Lett 4:897

    CAS  Google Scholar 

  44. Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC (2014) Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13:476

    CAS  Google Scholar 

  45. Sutherland BR, Hoogland S, Adachi MM, Wong CTO, Sargent EH (2014) Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8:10947

    CAS  Google Scholar 

  46. Kazmerski LL (2006) Solar photovoltaics R&D at the tipping point: a 2005 technology overview. J Electron Spectrosc Relat Phenom 150:105

    CAS  Google Scholar 

  47. Wang BH, Xiao XD, Chen T (2014) Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale 6:12287

    CAS  Google Scholar 

  48. Umebayashi T, Asai K, Kondo T, Nakao A (2003) Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B: Condens Matter 67:155405

    Google Scholar 

  49. Mosconi E, Amat A, Nazeeruddin MK, Grätzel M, De Angelis F (2013) First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117:13902

    CAS  Google Scholar 

  50. Im J-H, Chung J, Kim S-J, Park N-G (2012) Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res Lett 7:353

    Google Scholar 

  51. Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma T, Hayase S (2014) CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett 5:1004

    CAS  Google Scholar 

  52. Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG (2014) Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136:8094

    CAS  Google Scholar 

  53. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764

    CAS  Google Scholar 

  54. Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT (2016) Bandgap-Tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater 6:1502458

    Google Scholar 

  55. McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B (2016) A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351:151

    CAS  Google Scholar 

  56. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692

    CAS  Google Scholar 

  57. Zhang F, Zhong H, Chen C, Wu X-G, Hu X, Huang H, Han J, Zou B, Dong Y (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9:4533

    CAS  Google Scholar 

  58. Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG (2015) 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc 137:7843

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longwei Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, L., Li, B., Li, S., Yin, L. (2020). Magnetic, Electronic, and Optical Properties of Perovskite Materials. In: Arul, N., Nithya, V. (eds) Revolution of Perovskite. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1267-4_2

Download citation

Publish with us

Policies and ethics