Nonvolatile Ferroelectric Memory Transistors Using PVDF, P(VDF-TrFE) and Blended PVDF/P(VDF-TrFE) Thin Films

  • Dae-Hee Han
  • Byung-Eun ParkEmail author
Part of the Topics in Applied Physics book series (TAP, volume 131)


In this work, metal–ferroelectric–semiconductor field-effect transistors (MFSFETs) have been fabricated for the first time using poly(vinylidene fluoride) (PVDF) and polyvinylidene fluoride trifluoroethylene [P(VDF-TrFE)] thin films as ferroelectric layer. PVDF and P(VDF-TrFE) thin films were fabricated by sol–gel method on Si(100) wafers. The drain current–gate voltage (IDVG) characteristics of the fabricated MFSFETs with PVDF and P(VDF-TrFE) thin films exhibited very good ferroelectric hysteretic curves with counterclockwise loop same to those of other ferroelectric materials. It also demonstrates a realizable possibility of one-transistor type (1T-type) ferroelectric memory without a buffer layer using thin organic material. The absence of a buffer layer presents many advantages such as the elimination of the depolarization field, leakage current influence of the thin buffer layer, reduction of the process steps, low-operational voltage, and low-power consumption. The MFSFETs using PVDF and P(VDF-TrFE) thin films as ferroelectric layer have promising potential for use in low-voltage operable and flexible 1T-type ferroelectric random access memory (FeRAM) using organic material. On the other hand, it also has been attempted to make ferroelectric field-effect transistors (FeFETs) with blended PVDF/P(VDF-TrFE) films in order to compare the P(VDF-TrFE) films. The ferroelectric films for metal–ferroelectric-metal (MFM) capacitors have been fabricated using the blended PVDF/P(VDF-TrFE) solutions with different concentrations by sol–gel method. Ferroelectric field-effect transistors using poly(3-hexylthiopene) (P3HT) channel layer have also been fabricated on TiN substrates in order to compare the device characteristics of the pure P(VDF-TrFE) and blended PVDF/P(VDF-TrFE) thin films in this study.


This work was supported by the 2020 Research Fund of the University of Seoul.


  1. 1.
    J.F. Scott, C.A. Araujo, Science 246, 1400–1405 (1989)Google Scholar
  2. 2.
    O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22–27 (1998)Google Scholar
  3. 3.
    Y. Arimoto, H. Ishiwara, MRS Bull. 29, 823–828 (2004)Google Scholar
  4. 4.
    I.M. Ross, US Patent No. 2,791,760 (1957)Google Scholar
  5. 5.
    B.E. Park, H. Ishiwara, Appl. Phys. Lett. 79, 806–808 (2001)Google Scholar
  6. 6.
    B.E. Park, K. Takahashi, H. Ishiwara, Appl. Phys. Lett. 85, 4448–4450 (2004)Google Scholar
  7. 7.
    K.H. Kim, J.P. Han, S.W. Jung, T.P. Ma, IEEE Electron Device Lett. 23, 82–84 (2002)Google Scholar
  8. 8.
    K. Takahashi, K. Aizawa, B.E. Park, H. Ishiwara, Jpn. J. Appl. Phys. 44, 6218–6220 (2005)Google Scholar
  9. 9.
    S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25, 369–371 (2004)Google Scholar
  10. 10.
    M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)Google Scholar
  11. 11.
    S.Y. Wu, IEEE Trans. Electron Devices 21, 499–504 (1974)Google Scholar
  12. 12.
    J.H. Kim, D.W. Kim, H.S. Jeon, B.E. Park, Jpn. J. Appl. Phys. 46, 6976–6978 (2007)Google Scholar
  13. 13.
    J.H. Kim, J.N. Kim, B.E. Park, J. Korean Phys. Soc. 51, 723–726 (2007)Google Scholar
  14. 14.
    T. Furukawa, Phase Transition 18, 143–211 (1989)Google Scholar
  15. 15.
    D.W. Kim, G.G. Lee, B.E. Park, J. Korean Phys. Soc. 51, 719 (2007)Google Scholar
  16. 16.
    R.C.G. Naber, J. Massolt, M. Spijkman, K. Asadi, P.W.M. Blom, Appl. Phys. Lett. 90, 113509 (2007)Google Scholar
  17. 17.
    S. Fujisaki, Y. Fujisaki, H. Ishiwara: Appl. Phys. Lett. 90, 162902 (2007)Google Scholar
  18. 18.
    S.J. Kang, Y.J. Park, J.W. Sung, P.S. Jo, C.M. Park, K.J. Kim, B.O. Cho, Appl. Phys. Lett. 92, 012921 (2008)Google Scholar
  19. 19.
    N. Meng, X. Zhu, R. Mao, M.J. Reece, E. Bilotti, J. Mater. Chem. C 5, 3296–3305 (2017)Google Scholar
  20. 20.
    B. Ploss: Polymer, 41, 6087–6093 (2000)Google Scholar
  21. 21.
    Y. Cho, et al., Adv. Electron. Mater. 2, 201600225 (2016)Google Scholar
  22. 22.
    T. Furukawa, Phase Trans. 18, 143–211 (1989)Google Scholar
  23. 23.
    Q.M. Zhang, V. Bharti, X. Zhao, Science 280, 2101–2104 (1998)Google Scholar
  24. 24.
    G.H. Gelinck et al., Nat. Mater. 3, 106–110 (2004)Google Scholar
  25. 25.
    A. Rose, Z. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Nature 434, 876–879 (2005)Google Scholar
  26. 26.
    J. Veres et al., Adv. Funct. Mater. 13, 199–204 (2003)Google Scholar
  27. 27.
    B.E. Park, Korea Patent No. KR 10–0966301 (2010)Google Scholar
  28. 28.
    B.E. Park, Japan Patent No. JP 5,241,489 B2 (2013)Google Scholar
  29. 29.
    B.E. Park, US Patent No. US 8,120,082 B2 (2012)Google Scholar
  30. 30.
    M.W.J. Prins, S.E. Zinnemers, J.F. Cillessen, J.B. Giesbers, Appl. Phys. Lett. 70, 458 (1997)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of SeoulSeoulSouth Korea

Personalised recommendations