Advertisement

Novel Ferroelectric Gate Field-Effect Transistors (FeFETs); Controlled Polarization-Type FeFETs

  • Norifumi FujimuraEmail author
  • Takeshi Yoshimura
Chapter
  • 53 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 131)

Abstract

Controlled-polarization-type ferroelectric-gate thin film transistors (FeTFTs), which utilize the interaction between the polarizations of a polar semiconductor and a ferroelectric layer, have been proposed. When the polarizations align head-to-head, electrons that correspond to the sum of the polarizations are induced at the interface between the polar semiconductor and the ferroelectric layer. When the semiconductor is depleted, however, the polarization in the polar semiconductor aligns in the same direction as the polarization in the ferroelectric layer, whereas the polarization of the ferroelectric layer remains stable even under a depolarization field. This chapter describes the nonvolatile operation of the controlled-polarization-type FeTFTs resulting from the ferroelectric polarization reversal.

Keywords

Ferroelectric-gate transistor Thin film field-effect transistor Controlled-polarization type TFT 

References

  1. 1.
    S. Takagi, A. Toriumi, M. Iwase, H. Tango, IEEE Trans. Electron Devices 41, 2357 (1994)Google Scholar
  2. 2.
    S. Takagi, A. Toriumi, M. Iwase, H. Tango, IEEE Trans. Electron Devices 41, 2363 (1994)Google Scholar
  3. 3.
    Y. Zhao, H. Matsumoto, T. Sato, S. Koyama, M. Takenaka, S. Takagi, IEEE Trans. Electron Devices 57, 2057 (2010)Google Scholar
  4. 4.
    R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, M. Radosavljevic, Microelectr. Eng. 80, 1 (2005)Google Scholar
  5. 5.
    M. Yokoyama, T. Yasuda, H. Takagi, N. Miyata, Y. Urabe, H. Ishii, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, S. Takagi, Appl. Phys. Lett. 96, 142106 (2010)Google Scholar
  6. 6.
    Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, P. D. Ye, IEEE Trans. 28, 935 (2007)Google Scholar
  7. 7.
    V. Tilak, K. Matocha, G. Dunne, IEEE Trans. Electron Devices 54, 2823 (2007)Google Scholar
  8. 8.
    T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, Jpn. J. Appl. Phys. 19, L225 (1980)Google Scholar
  9. 9.
    T. Edahiro, N. Fujimura, T. Ito, J. Appl. Phys. 93, 7673 (2003)Google Scholar
  10. 10.
    J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, M. Kawasaki, Appl. Phys. Express 4, 091101 (2011)Google Scholar
  11. 11.
    A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004)Google Scholar
  12. 12.
    H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B. -J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa, Y. Iwasa, Nature Physics 9, 563 (2013)Google Scholar
  13. 13.
    A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, D. Maryenko, A. Ohtomo, M. Kawasaki, Nature Mater. 9, 889 (2010)Google Scholar
  14. 14.
    G. Cheng, P.F. Siles, F. Bi, C. Cen, D.F. Bogorin, C.W. Bark, C.M. Folkman, J.-W. Park, C.-B. Eom, G.M. Ribeiro, J. Levy, Nat. Nanotechnol. 6, 343 (2011)Google Scholar
  15. 15.
    H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Nat. Mater. 6, 129 (2007)Google Scholar
  16. 16.
    Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Nat. Mater. 10, 296 (2011)Google Scholar
  17. 17.
    C.H. Ahn, A. Bhattacharya, M.D. Ventra, J.N. Eckstein, C.D. Frisbie, M.E. Gershenson, A.M. Goldman, I.H. Inoue, J. Mannhart, A.J. Millis, A.F. Morpurgo, D. Natelson, J.-M. Triscone, Rev. Mod. Phys. 78, 1185 (2006)Google Scholar
  18. 18.
    S. Okamoto, A.J. Millis, Nature 428, 630 (2004)Google Scholar
  19. 19.
    K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Mater. 7, 885 (2008)Google Scholar
  20. 20.
    W.L. Warren, D. Dimos, B.A. Tuttle, G.E. Pike, R.W. Schwartz, P.J. Clews, D.C. Mclntyre, J. Appl. Phys. 77, 6695 (1995)Google Scholar
  21. 21.
    H. Funakubo, T. Watanabe, H. Morioka, A. Nagai, T. Oikawa, M. Suzuki, H. Uchida, S. Kouda, K. Saito, Mater. Sci. Eng. B 118, 23 (2005)Google Scholar
  22. 22.
    X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)Google Scholar
  23. 23.
    D.J. Kim, J.Y. Jo, Y.S. Kim, Y.J. Chang, J.S. Lee, J.-G. Yoon, T.K. Song, T.W. Noh, Phys. Rev. Lett. 95, 237602 (2005)Google Scholar
  24. 24.
    K.Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. 43, L647 (2004)Google Scholar
  25. 25.
    J. Yan, M. Gomi, T. Yokota, H. Song, Appl. Phys. Lett. 102, 222906 (2013)Google Scholar
  26. 26.
    K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, C.B. Eom, Science 306, 1005 (2004)Google Scholar
  27. 27.
    S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)Google Scholar
  28. 28.
    Y. Kato, Y. Kaneko, H. Tanaka, Y. Shimada, Jpn. J. Appl. Phys. 47, 2719 (2008)Google Scholar
  29. 29.
    S. Fujisaki, H. Ishiwara, Y. Fujisaki, Appl. Phys. Express 1, 081801 (2008)Google Scholar
  30. 30.
    T. Miyasako, M. Senoo, E. Tokumitsu, Appl. Phys. Lett. 86, 162902 (2005)Google Scholar
  31. 31.
    T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 50, 04DD09 (2011)Google Scholar
  32. 32.
    Y. Kaneko, Y. Nishitani, M. Ueda, E. Tokumitsu, E. Fujii, Appl. Phys. Lett. 99, 182902 (2011)Google Scholar
  33. 33.
    Y. Kaneko, H. Tanaka, Y. Kato, Jpn. J. Appl. Phys. 48, 09KA19 (2009)Google Scholar
  34. 34.
    T. Hatanaka, M. Takahashi, S. Sakai, K. Takeuchi, IEICE Trans. Electron. 94, 539 (2011)Google Scholar
  35. 35.
    T. Fukushima, T. Yoshimura, K. Masuko, K. Maeda, A. Ashida, N. Fujimura, Jpn. J. Appl. Phys. 47, 8874 (2008)Google Scholar
  36. 36.
    T. Fukushima, K. Maeda, T. Yoshimura, A. Ashida, N. Fujimura, Jpn. J. Appl. Phys. 50, 04DD16 (2011)Google Scholar
  37. 37.
    E.F. Bertant, F. Forrast, P.H. Fang, C. R. Acad. Sci. 256, 1963 (1958)Google Scholar
  38. 38.
    V.A. Bokov, G.A. Smolenski, S.A. Kizhaev, I.E. Myl’nilova: Sov. Phys. Solid State 5, 2646 (1964)Google Scholar
  39. 39.
    G.A. Smolenski, V.A. Bokov, J. Appl. Phys. 35, 915 (1964)Google Scholar
  40. 40.
    I.G. Ismailzade, S.A. Kizhaev, Sov. Phys. Solid State 7, 236 (1965)Google Scholar
  41. 41.
    D. Ito, N. Fujimura, T. Yoshimura, T. Ito: J. Appl. Phys. 93, 5563 (2003)Google Scholar
  42. 42.
    N. Shigemitsu, H. Sakata, D. Ito, T. Yoshimura, A. Ashida, N. Fujimura: Jpn. J. Appl. Phys. 43, 6613 (2004)Google Scholar
  43. 43.
    K. Maeda, T. Yoshimura, N. Fujimura: Jpn. J. Appl. Phys. 48, 09KB05 (2009)Google Scholar
  44. 44.
    T. Edahiro, N. Fujimura, T. Ito, J. Appl. Phys. 43, 6613 (2004)Google Scholar
  45. 45.
    K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, J. Appl. Phys. 103, 043714 (2008)Google Scholar
  46. 46.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), pp. 486–495Google Scholar
  47. 47.
    J. Siddiqui, E. Cagin, D. Chen, J.D. Phillips, Appl. Phys. Lett. 88, 212903 (2006)Google Scholar
  48. 48.
    N. Fujimura, N. Shigemitsu, T. Takahashi, A. Ashida, T. Yoshimura, H. Fukumura, H. Harima, Philos. Mag. Lett. 87, 193 (2007)Google Scholar
  49. 49.
    H.C.F. Martens, H.B. Brom, P.W.M. Blom, Phys. Rev. B 60, R8489 (1999)Google Scholar
  50. 50.
    J.R. Hauser, IEEE Trans. Electron Device, 12, 605 (1965)Google Scholar
  51. 51.
    H. Yamada, T. Fukushima, T. Yoshimura, N. Fujimura, J. Korean Phys. Soc. 58, 792 (2011)Google Scholar
  52. 52.
    H. Kodama, Y. Takahashi, T. Furukawa, Jpn. J. Appl. Phys. 38, 3589 (1999)Google Scholar
  53. 53.
    T. Fukuma, K. Kobayashi, T. Horiuchi, H. Yamada, K. Matsushige, Jpn. J. Appl. Phys. 39, 3830 (2000)Google Scholar
  54. 54.
    K. Tashiro, H. Kaito, M. Kobayashi, Polymer 33, 2915 (1992)Google Scholar
  55. 55.
    P. Ruterana, M. Abouzaid, A. Bere, J. Chen, J. Appl. Phys. 103, 033501 (2008)Google Scholar
  56. 56.
    C.G. Van de Walle, Phys. Rev. Lett. 85, 1102 (2000)Google Scholar
  57. 57.
    Y. Wang, B. Meyer, X. Yin, M. Kunat, D. Langenberg, F. Traeger, A. Birkner, C. Woll, Phys. Rev. Lett. 95, 266104 (2005)Google Scholar
  58. 58.
    D.C. Look, H.L. Mosbacker, Y.M. Strzhemechny, L.J. Brillson, Superlattices Microstruct. 38, 406 (2005)Google Scholar
  59. 59.
    S. Sakamoto, T. Oshio, A. Ashida, T. Yoshimura, N. Fujimura, Appl. Surf. Sci. 254, 6248 (2008)Google Scholar
  60. 60.
    D.C. Look, R.J. Molnar, Appl. Phys. Lett. 70, 3377 (1997)Google Scholar
  61. 61.
    H. Tampo, A. Yamada, P. Fons, H. Shibata, K. Matsubara, K. Iwata, S. Niki, K. Nakahara, H. Takasu, Appl. Phys. Lett. 84, 4412 (2004)Google Scholar
  62. 62.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2007), p. 308Google Scholar
  63. 63.
    D.C. Look, Electrical Characterization of GaAs Materials and Devices (Wiley, New York, 1989), pp. 54, 76.Google Scholar
  64. 64.
    K. Hess, Appl. Phys. Lett. 35, 484 (1979)Google Scholar
  65. 65.
    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399–401 (1998)Google Scholar
  66. 66.
    S.V. Vandebroek, E.F. Crabbe, B.S. Meyerson, D.L. Harame, P.J. Restle, J.M.C. Stork, A.C. Megdanis, C.L. Stanis, A.A. Bright, G.M.W. Kroesen, A.C. Warren, IEEE Electron Device Lett. 12, 447 (1991)Google Scholar
  67. 67.
    E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Engineering, Department of Physics and ElectronicsOsaka Prefecture UniversitySakaiJapan

Personalised recommendations