Advertisement

Oxide-Channel Ferroelectric-Gate Thin-Film Transistors with Nonvolatile Memory Function

  • Eisuke TokumitsuEmail author
Chapter
  • 30 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 131)

Abstract

In this chapter, principle and progress of oxide-channel ferroelectric-gate transistors were reviewed. At first, it is pointed out that ferroelectric-gate insulator can induce large charge density because of the remanent polarization, in addition to nonvolatile memory function. Next, using this feature of ferroelectric-gate insulator, it is shown that even conductive oxide, such as indium-tin-oxide (ITO), can be used as a channel if its thickness is thin enough. Good transistor performance is demonstrated for ITO-channel ferroelectric-gate TFTs. In particular, a large on-current can be obtained in such devices, because large charge density is utilized even though the channel mobility is not so high. Furthermore, transparent devices were demonstrated using ITO for both channel and electrodes. In addition, ITO-channel TFTs without nonvolatile memory function are demonstrated using high-dielectric constant (high-k) material as a gate insulator.

Notes

Acknowledgements

The author would like to acknowledge students in his group for their works related on the presented subject.

References

  1. 1.
    H. Ishiwara, M. Okuyama, Y. Arimoto (eds.), Ferroelectric Random Access Memories, Fundamentals and Applications (Springer, Berlin, 2004)Google Scholar
  2. 2.
    M. Okuyama, Y. Ishibashi (eds.), Ferroelectric Thin Films, Basic Properties and Device Physics for Memory Applications (Springer, Berlin, 2005)Google Scholar
  3. 3.
    I. M. Loss, US patent 2791760 (1957)Google Scholar
  4. 4.
    J.L. Moll, Y. Tarui, IEEE Trans. Electron Devices ED-10, 333 (1963)Google Scholar
  5. 5.
    Y. Higuma, Y. Matsui, M. Okuyama, T. Nakagawa, Y. Hamakawa, Jpn. J. Appl. Phys. 17 (Suppl. 17–1), 209 (1978)Google Scholar
  6. 6.
    E. Tokumitsu, G. Fujii, H. Ishiwara, Appl. Phys. Lett. 75, 575 (1999)Google Scholar
  7. 7.
    T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, Y. Tarui, Jpn. J. Appl. Phys. 36, 5908 (1997)Google Scholar
  8. 8.
    Y. Nakao, T. Nakamura, A. Kamisawa, H. Takasu, Integrated Ferroelectrics, 6, 23 (1995)Google Scholar
  9. 9.
    Y. Fujimori, T. Nakamura, A. Kamisawa, Jpn. J. Appl. Phys. 38, 2285 (1999)Google Scholar
  10. 10.
    E. Tokumitsu, R. Nakamura, H. Ishiwara, IEEE Electron Device Lett. EDL-18, 160 (1997)Google Scholar
  11. 11.
    E. Tokumitsu, G. Fujii, H. Ishiwara, Jpn. J. Appl. Phys. 39, 2125 (2000).Google Scholar
  12. 12.
    E. Tokumitsu, K. Okamoto, H. Ishiwara, Jpn. J. Appl. Phys. 40, 2917 (2001)Google Scholar
  13. 13.
    K. Aizawa, B.-E. Park, Y. Kawashima, K. Takahashi, H. Ishiwara, Appl. Phys. Lett. 85, 3199 (2004)Google Scholar
  14. 14.
    M. Takahash, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005).Google Scholar
  15. 15.
    E. Tokumitsu, M. Senoo, T. Miyasako, J. Microelectronic Eng. 80, 305 (2005)Google Scholar
  16. 16.
    T. Miyasako, M. Senoo, E. Tokumitsu, Appl. Phys. Lett. 86, 162902 (2005)Google Scholar
  17. 17.
    K. Nomura, H. Ota, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)Google Scholar
  18. 18.
    P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes Jr., Appl. Phys. Lett, 82 1117 (2004)Google Scholar
  19. 19.
    J. Nishii, F.M. Hossain, S. Takagi, T. Arita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, M. Kawasaki, Jpn. J. Appl. Phys. 42, L347 (2003)Google Scholar
  20. 20.
    K. Kwon, Y. Li, Y. W. Heo, M. Jones, P.H. Holloway, D.P. Norton, Z.V. Park, S. Li, Appl. Phys. Lett. 84, 2685 (2004)Google Scholar
  21. 21.
    E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, R. Matins, L. Pereira, Appl. Phys. Lett. 85, 2541 (2005)Google Scholar
  22. 22.
    E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)Google Scholar
  23. 23.
    M.W.J. Prins, K.O. Grosse-Holz, G. Muller, J. F.M. Cillessen, J.B. Giesbers, R.P. Weening, R.M. Wolf, Appl. Phys. Lett. 68, 3650 (1996)Google Scholar
  24. 24.
    M.W.J. Prins, S.E. Zinnemers, J.F.M. Cillessen, J.B. Giesbers, Appl. Phys. Lett. 70, 458 (1997)Google Scholar
  25. 25.
    E. Tokumitsu, M. Senoo, E. Shin, Mater. Res. Soc. Proc. 902E, 0902-T10-54 (2006)Google Scholar
  26. 26.
    E. Tokumitsu, Y. Kondo, J. Korean Phys, Soc. 54, 539 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations