FeFETs for Neuromorphic Systems

  • Halid MulaosmanovicEmail author
  • Thomas Mikolajick
  • Stefan Slesazeck
Part of the Topics in Applied Physics book series (TAP, volume 131)


Neuromorphic engineering represents one of the most promising computing paradigms for overcoming the limitations of the present-day computers in terms of energy efficiency and processing speed. While traditional neuromorphic circuits are based on complementary metal oxide semiconductor (CMOS) transistors and large capacitors, the recently emerging nanoelectronic devices stand out as promising candidates for building the fundamental neuromorphic elements: neurons and synapses. In this chapter, we illustrate how hafnium oxide-based ferroelectric field-effect transistors (FeFETs) can be used to realize both artificial neurons and synapses for spiking neural networks. In particular, the accumulative switching property of FeFETs will be exploited to mimic the integrate-and-fire neuronal functionality, whereas the continuously tunable synaptic weights and the plasticity will be implemented by the partial polarization switching in large-area devices. Finally, the use of FeFETs for deep neural networks will be briefly discussed.


  1. 1.
    G. Indiveri, S.-C. Liu, Proc. IEEE., 103, 1379 (2015)Google Scholar
  2. 2.
    G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Front. Neurosci. 5 (2011)Google Scholar
  3. 3.
    E. Chicca, F. Stefanini, C. Bartolozzi, G. Indiveri, Proc. IEEE, 102, 1367 (2014)Google Scholar
  4. 4.
    G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, Adv. Phys. X, 2, 89 (2017)Google Scholar
  5. 5.
    A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N.D. Mathur, M. Bibes, A. Barthélémy, J. Grollier, Nat. Mater. 11, 860 (2012)Google Scholar
  6. 6.
    S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthélémy, S. Saighi, V. Garcia, Nat. Commun. 8, 14736 (2018)Google Scholar
  7. 7.
    H. Ishiwara, Jpn. J. Appl. Phys. 32, 442 (1993)Google Scholar
  8. 8.
    S.M. Yoon, E. Tokumitsu, H. Ishiwara, IEEE Electron Device Lett. 20, 526 (1999)Google Scholar
  9. 9.
    Y. Nishitani, Y. Kaneko, M. Ueda, T. Morie, E. Fujii, J. Appl. Phys. 111, 124108 (2012)Google Scholar
  10. 10.
    Y. Nishitani, Y. Kaneko, M. Ueda, IEEE Trans. Neural Netw. Learning Syst. 26, 2999 (2015)Google Scholar
  11. 11.
    W. Maass, Neural Netw. 10, 1659 (1997)Google Scholar
  12. 12.
    C. Koch, G. Laurent, Science, 284, 96 (1999)Google Scholar
  13. 13.
    A.N. Burkitt, Biol. Cybern. 95, 1 (2006)Google Scholar
  14. 14.
    H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, ACS Appl. Mater. Interfaces, 10, 23997 (2018)Google Scholar
  15. 15.
    H. Mulaosmanovic, E. Chicca, M. Bertele, T. Mikolajick, S. Slesazeck, Nanoscale, 10, 21755 (2018)Google Scholar
  16. 16.
    E.R. Kandel, J.H. Schwartz, T.M. Jessel, Principles of Neural Science, 3rd edn. (Prentice-Hall International, 1991)Google Scholar
  17. 17.
    A.D. Adrian, J. Physiol. 61, 49 (1926)Google Scholar
  18. 18.
    A.A. Faisal, L.P. Selen, D.M. Wolpert, Nature Rev. Neurosci. 9, 292 (2008)Google Scholar
  19. 19.
    H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, S. Slesazeck, VLSI Technol. Symp. Tech. Dig. T176 (2017)Google Scholar
  20. 20.
    L. Abbott, S. Nelson, Nat. Neurosci. 3, 1178 (2000)Google Scholar
  21. 21.
    G.-Q. Bi, M.-M. Poo, J. Neurosci., 18, 10464 (1998)Google Scholar
  22. 22.
    S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.S.P. Wong, IEEE Trans. Electron Dev. 99, 1 (2011)Google Scholar
  23. 23.
    H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, S. Slesazeck, ACS Appl. Mater. Interfaces, 9, 3792 (2017)Google Scholar
  24. 24.
    V. Sze, Y.H. Chen, T.J. Yang, J.S. Emer, Proc. IEEE, 105, 2295 (2017)Google Scholar
  25. 25.
    M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, S. Datta, in IEDM Tech. Dig. (2018)Google Scholar
  26. 26.
    M. Seo, M.H. Kang, S.B. Jeon, H. Bae, J. Hur, B.C. Jang, S. Yun, S. Cho, W.K. Kim, M.S. Kim, K.M. Hwang, S. Hong, S.Y. Choi, Y.K. Choi, IEEE Electron Device Lett. 39, 1445 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Halid Mulaosmanovic
    • 1
    Email author
  • Thomas Mikolajick
    • 1
    • 2
  • Stefan Slesazeck
    • 1
  1. 1.Nanoelectronic Materials Laboratory—NaMLab gGmbHDresdenGermany
  2. 2.IHM, Technische Universität DresdenDresdenGermany

Personalised recommendations