Advertisement

Polymorphism of Hafnia-Based Ferroelectrics for Ferroelectric Field-Effect Transistors

  • Min Hyuk ParkEmail author
Chapter
  • 28 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 131)

Abstract

In this chapter, the thermodynamic and kinetic origins of the unexpected ferroelectric phase formation in emerging fluorite-structure oxides such as HfO2 and ZrO2 are discussed. Various thermodynamic factors, such as doping, stress, and surface/interface/grain boundary energies, could affect the relative free energies of crystalline phases. However, several phenomena including the effects of annealing temperature could not be explained by thermodynamic factors. In this regard, a kinetic mechanism was recently suggested to understand the metastable ferroelectric phase formation. Previous studies on the mechanism of the ferroelectric phase formation are comprehensively critically reviewed to understand the unexpected ferroelectric phase formation.

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, grant-funded by the Ministry of Education (NRF-2018R1C1B5086580) and by the Global Frontier Program through the Global Frontier Hybrid Interface Materials of the NRF of Korea funded by the Ministry of Science and ICT (2013M3A6B1078874).

References

  1. 1.
    T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Appl. Phys. Lett. 99, 102903 (2011)Google Scholar
  2. 2.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Adv. Mater. 27, 1811 (2015)Google Scholar
  3. 3.
    T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, MRS Bull. 43, 340 (2018)Google Scholar
  4. 4.
    M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C.S. Hwang, MRS Commun. 8, 795 (2018)Google Scholar
  5. 5.
    M. Hoffmann, M. Pešić, K. Chatterjee, A. I. Khan, S. Salahuddin, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 26, 8643 (2016)Google Scholar
  6. 6.
    M. Hoffmann, F.P.G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck, T. Mikolajick, Nature 565, 464 (2019)Google Scholar
  7. 7.
    K.D. Kim, Y.J. Kim, M.H. Park, H.W. Park, Y.J. Kwon, Y.B. Lee, H.J. Kim, T. Moon, Y.H. Lee, S.D. Hyun, B.S. Kim, C.S. Hwang, Adv. Funct. Mater. 1808228 (2019)  https://doi.org/10.1002/adfm.201808228
  8. 8.
    M. Si, C.-J. Su, C. Jiang, N.J. Conrad, H. Zhou, K.D. Maize, G. Qiu, C.-T. Wu, A. Shakouri, M.A. Alam, P.D. Ye, Nat. Nanotechnol. 13, 24 (2018)Google Scholar
  9. 9.
    O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, T. Kikegawa, J. Am. Ceram. Soc. 84, 1369 (2001)Google Scholar
  10. 10.
    O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, T. Kikegawa, Phys. Rev. B 63, 174108 (2001)Google Scholar
  11. 11.
    X. Sang, E.D. Grimley, T. Schenk, U. Schröder, J.M. LeBeau, Appl. Phys. Lett. 106, 162905 (2015)Google Scholar
  12. 12.
    S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012)Google Scholar
  13. 13.
    J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Nano Lett. 12, 4318 (2012)Google Scholar
  14. 14.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, H.K. Kim, C.S. Hwang, Appl. Phys. Lett. 102, 112914 (2013)Google Scholar
  15. 15.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, C.S. Hwang, Appl. Phys. Lett. 102, 242905 (2013)Google Scholar
  16. 16.
    J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, L. Frey, J. Appl. Phys. 110, 114113 (2011)Google Scholar
  17. 17.
    T. Olsen, U. Schröder, S. Müller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, T. Mikolajick, Appl. Phys. Lett. 101, 082905 (2012)Google Scholar
  18. 18.
    S. Starschich, D. Griesche, T. Schneller, R. Waser, U. Böttger, Appl. Phys. Lett. 104, 202903 (2014)Google Scholar
  19. 19.
    S. Mueller, C. Adelmann, A. Singh, S. V. Elshocht, U. Schroeder, T. Mikolajick, ECS J. Solid St. Sci. 1, N123 (2012)Google Scholar
  20. 20.
    T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S.V. Elshocht, T. Mikolajick, in Proceedings of the European Solid-State Device Research Conference (2013), p. 260.Google Scholar
  21. 21.
    U. Schroeder, C. Richter, M.H. Park, T. Schenk, M. Pešić, M. Hoffmann, F.P.G. Fengler, D. Pohl, B. Rellinghaus, C. Zhou, C.C. Chung, J.L. Jones, T. Mikolajick, Inorg. Chem. 57, 2752 (2018)Google Scholar
  22. 22.
    U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S.V. Kalinin, T. Mikolajick, Jpn. J. Appl. Phys. 53, 08LE02 (2014)Google Scholar
  23. 23.
    M.H. Park, T. Schenk, C.M. Fancher, E.D. Grimley, C. Zhou, C. Richter, J.M. LeBeau, J.L. Jones, T. Mikolajick, U. Schroeder, J. Mater. Chem. C 5, 4677 (2017)Google Scholar
  24. 24.
    S. Starschich, U. Boettger, J. Mater. Chem. C 5, 333 (2017)Google Scholar
  25. 25.
    S. Starschich, T. Schenk, U. Schroeder, U. Boettger, Appl. Phys. Lett. 110, 18 (2017)Google Scholar
  26. 26.
    L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi, J. Appl. Phys. 122, 124104 (2017)Google Scholar
  27. 27.
    T.D. Huan, V. Sharma, G.A. Rossetti Jr., R. Ramprasad, Phys. Rev. B 90, 064111 (2014)Google Scholar
  28. 28.
    S.E. Reyes-Lillo, K.F. Garrity, K.M. Rabe, Phys. Rev. B 90, 140103 (2014)Google Scholar
  29. 29.
    R. Materlik, C. Künneth, A. Kersch, J. Appl. Phys. 117, 134109 (2015)Google Scholar
  30. 30.
    R. Batra, T.D. Huan, J.L. Jones, G. Rossetti Jr. R. Ramprasad, J. Phys. Chem. C 121, 4139 (2017)Google Scholar
  31. 31.
    R. Batra, T.D. Huan, G.A. Rossetti Jr. R. Ramprasad, Chem. Mater. 29, 9102 (2017)Google Scholar
  32. 32.
    E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A.P. Graham, T. Melde, U. Schröder, T. Mikolajick, Thin Solid Films 533, 88 (2013)Google Scholar
  33. 33.
    H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, W. Jeon, T. Gwon, T. Moon, K.D. Kim, C.S. Hwang, Appl. Phys. Lett. 105, 192903 (2014)Google Scholar
  34. 34.
    S. Riedel, P. Polakowski, J. Mueller, AIP Adv. 6, 095123 (2016)Google Scholar
  35. 35.
    R.C. Garvie, J. Phys. Chem. 69, 1238 (1965)Google Scholar
  36. 36.
    R.C. Garvie, J. Phys. Chem. 82, 218 (1978)Google Scholar
  37. 37.
    M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, J. Am. Ceram. Soc. 88, 160 (2005)Google Scholar
  38. 38.
    M.H. Park, Y.H. Lee, H.J. Kim, T. Schenk, W. Lee, K.D. Kim, F.P.G. Fengler, T. Mikolajick, U. Schroeder, C.S. Hwang, Nanoscale 9, 9973 (2017)Google Scholar
  39. 39.
    C. Künneth, R. Materlik, A. Kersch, J. Appl. Phys. 121, 205304 (2017)Google Scholar
  40. 40.
    M. Pešić, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E.D. Grimley, X. Sang, J.M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 26, 4601 (2016)Google Scholar
  41. 41.
    E.D. Grimley, T. Schenk, T. Mikolajick, U. Schroeder, J.M. LeBeau, Adv. Mater. Interfaces 5, 1701258 (2018)Google Scholar
  42. 42.
    R. Batra, H.D. Tran, R. Ramprasad, Appl. Phys. Lett. 108, 172902 (2016)Google Scholar
  43. 43.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, C.S. Hwang, Appl. Phys. Lett. 104, 072901 (2014)Google Scholar
  44. 44.
    T. Schenk, PhD thesis, TU DresdenGoogle Scholar
  45. 45.
    T. Shiraishi, K. Katayama, T. Yokouchi, T. Shimizu, T. Oikawa, O. Sakata, H. Uchida, Y. Imai, T. Kiguchi, T. J. Konno, H. Funakubo, Appl. Phys. Lett. 108, 262904 (2016)Google Scholar
  46. 46.
    S.J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J.S. Lee, J. Lee, H.S. Kim, Y.-C. Byun, A.T. Lucero, C.D. Young, S.R. Summerfelt, T. San, L. Colombo, J. Kim, Appl. Phys. Lett. 111, 242901 (2017)Google Scholar
  47. 47.
    J.E. Lowther, J.K. Dewhurst, J.M. Leger, J. Haines, Phys. Rev. B 60, 14485 (1999)Google Scholar
  48. 48.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, S.D. Hyun, T. Mikolajick, U. Schroeder, C.S. Hwang, Nanoscale 10, 716 (2018)Google Scholar
  49. 49.
    M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C. S. Hwang, Adv. Electron. Mater. 5, 1800522 (2019)Google Scholar
  50. 50.
    M.H. Park, C.C. Chung, T. Schenk, C. Richter, K. Opsomer, C. Detavernier, C. Adelmann, J.L. Jones, T. Mikolajick, U. Schroeder, Adv. Electron. Mater. 4, 1800091 (2018)Google Scholar
  51. 51.
    S.-H. Guan, X.-J. Zhang, Z.-P. Liu, J. Am. Chem. Soc. 137, 8010 (2015)Google Scholar
  52. 52.
    Y.H. Lee, S.D. Hyun, H.J. Kim, J.S. Kim, C. Yoo, T. Moon, K.D. Kim, H.W. Park, Y.B. Lee, B.S. Kim, J. Roh, M.H. Park, C.S. Hwang, Adv. Electron. Mater. 5, 1800436 (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringPusan National UniversityBusanSouth Korea

Personalised recommendations