Mechanically Flexible Nonvolatile Field Effect Transistor Memories with Ferroelectric Polymers

  • Richard H. Kim
  • Cheolmin ParkEmail author
Part of the Topics in Applied Physics book series (TAP, volume 131)


Great efforts have been devoted to improve the properties of nonvolatile memory with field effect transistor architecture containing ferroelectric polymers (NV-FeFETs) due to the potential advantages of the ferroelectric polymers including their low cost, easy fabrication based on solution processes, and mechanical flexibility. Here, we review the current status of development in particular on mechanically flexible NV-FeFETs. In addition, recent researches that demonstrate the importance of the analysis techniques to characterize the mechanical properties of thin films composing a FeFET are discussed, including nano-indentation and nano-scratch test.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No.2014R1A2A1A01005046).


  1. 1.
    J. Jang, F. Pan, K. Braam, V. Subramanian, Adv. Mater. 24, 3573 (2012)Google Scholar
  2. 2.
    S. Lee, H. Kim, D.-J. Yun, S.-W. Rhee, K. Yong, Appl. Phys. Lett. 95, 262113 (2009)Google Scholar
  3. 3.
    C.-H. Cheng, F.-S. Yeh, A. Chin, Adv. Mater. 23, 902 (2011)Google Scholar
  4. 4.
    S.-J. Kim, J.-S. Lee, Nano Lett. 10, 2884–2890 (2010)Google Scholar
  5. 5.
    S.-J. Kim, J.-M. Song, J.-S. Lee, J. Mater. Chem. 21, 14516 (2011).Google Scholar
  6. 6.
    Y. Zhou, S.-T. Han, Z.-X. Xu, V.A.L. Roy, Nanotechnology 23, 344014 (2012)Google Scholar
  7. 7.
    A.K. Tripathi, A.J.J.M. van Breeman, J. Shen, Q. Gao, M.G. Ivan, K. Reimann, E.R. Meinders, H. Gelinck, Adv. Mater. 23, 4146 (2011)Google Scholar
  8. 8.
    G.-G. Lee, E. Tokumitsu, S.-M. Yoon, Y. Fujisaki, J.-W. Yoon, H. Ishiwara, Appl. Phys. Lett. 99, 012901 (2011).Google Scholar
  9. 9.
    A. van Breemen, B. Kam, B. Cobb, F.G. Rodriguez, G. van Heck, K. Myny, A. Marrani, V. Vinciguerra, G. Gelinck, Org. Electron. 14, 1966 (2013)Google Scholar
  10. 10.
    S.-W. Jung, J.B. Koo, C.W. Park, B.S. Na, J.-Y. Oh, S.S. Lee, J. Vac. Sci. Technol. B 33, 051201 (2015)Google Scholar
  11. 11.
    K.H. Lee, G. Lee, K. Lee, M.S. Oh, S. Im, S.-M. Yoon, Adv. Mater. 21, 4287 (2009)Google Scholar
  12. 12.
    S.-M. Yoon, S. Yang, S.-H.K. Park, J. Electrochem. Soc. 158, H892 (2011)Google Scholar
  13. 13.
    S.H. Noh, W. Choi, M.S. Oh, D.K. Hwang, K. Lee, S. Jang, E. Kim, S. Im, Appl. Phys. Lett. 90, 253504 (2007)Google Scholar
  14. 14.
    Y.T. Lee, P.J. Jeon, K.H. Lee, R. Ha, H.-J. Choi, S. Im, Adv. Mater. 24, 3020 (2012)Google Scholar
  15. 15.
    H.S. Lee, S.-W. Min, M.K. Park, Y.T. Lee, P.J. Jeon, J.H. Kim, S. Ryu, S. Im, Small 20, 3111 (2012)Google Scholar
  16. 16.
    M.A. Khan, J.A. Caraveo-Frescas, H.N. Alshareef, Org. Electron. 16, 9 (2015)Google Scholar
  17. 17.
    G.A. Salvatore, D. Bouvet, I. Stolitchnov, N. Setter, A.M. Ionescu, Solid-State Device Research Conference, 38th European (2008), p. 162Google Scholar
  18. 18.
    S. Das, J. Appenzeller, Nano Lett. 11, 4003 (2011)Google Scholar
  19. 19.
    K.H. Lee, G. Lee, K. Lee, M.S. Oh, S. Im, Appl. Phys. Lett. 94, 093304 (2009)Google Scholar
  20. 20.
    M.A. Khan, U.S. Bhansali, H.N. Alshareef, Adv. Mater. 24, 2165 (2012)Google Scholar
  21. 21.
    B. Kam, X. Li, C. Cristoferi, E.C.P. Smits, A. Mityashin, S. Schols, J. Genoe, G. Gelinck, P. Heremans, 101, 033304 (2012)Google Scholar
  22. 22.
    B. Kam, T.-H. Ke, A. Chasin, M. Tyagi, C. Cristoferi, K. Tempelarrs, A.J.J.M. van Breemen, K. Myny, S. Schols, J. Genoe, G.H. Gelinck, P. Heremans, IEEE Electron Device Lett. 35, 539 (2014)Google Scholar
  23. 23.
    J. Chang, C.H. Shin, Y.J. Park, S.J. Kang, H.J. Jeong, K.J. Kim, C.J. Hawler. T.P. Russell, D.Y. Ryu, C. Park, Org. Electron. 10, 849 (2009)Google Scholar
  24. 24.
    W.-H. Kim, J.-H. Bae, M.-H. Kim, C.-M. Keum, J. Park, S.-D. Lee, J. Appl. Phys. 109, 024508 (2011)Google Scholar
  25. 25.
    C.W. Choi, A.A. Prabu, Y.M. Kim, S. Yoon, K.J. Kim, C. Park, Appl. Phys. Lett. 93, 182902 (2008)Google Scholar
  26. 26.
    S.J. Kang, Y.J. Park, J. Sung, P.S. Jo, B.O. Cho, C. Park, Appl. Phys. Lett. 92, 012921 (2008)Google Scholar
  27. 27.
    T. Kanashima, K. Yabe, M. Okuyama, Jpn. J. Appl. Phys. 51, 02BK06 (2012)Google Scholar
  28. 28.
    C.A. Nguyen, S.G. Mhaisalkar, J. Ma, P.S. Lee, Org. Electron. 9, 1087 (2008)Google Scholar
  29. 29.
    Y.J. Park, S.J. Kang, B. Lotz, M. Brinkmann, A. Thierry, K.J. Kim, C. Park, Macromolecules 41, 8648 (2008)Google Scholar
  30. 30.
    T. Kanashima, Y. Katsura, M. Okuyama, Jpn. J. Appl. Phys. 53, 04ED11 (2014)Google Scholar
  31. 31.
    S.J. Kang, I. Bae, Y.J. Park, T.H. Park, J. Sung, S.C. Yoon, K.H. Kim, D.H. Choi, C. Park, 19, 1609 (2009)Google Scholar
  32. 32.
    S.J. Kang, I. Bae, Y.J. Shin, Y.J. Park, J. Huh, S.-M. Park, H.-C. Kim, C. Park, Nano Lett. 11, 138 (2011)Google Scholar
  33. 33.
    I. Bae, S.J. Kang, Y.J. Park, T. Furukawa, C. Park, 10, e54 (2010)Google Scholar
  34. 34.
    S.J. Kang, Y.J. Park, I. Bae, K.J. Kim, H.-C. Kim, S. Bauer, E.L. Thomas, C. Park, Adv. Funct. Mater. 19, 2812 (2009)Google Scholar
  35. 35.
    R.H. Kim, S.J. Kang, I. Bae, Y.S. Choi, Y.J. Park, C. Park, Org. Electron. 13, 491 (2012)Google Scholar
  36. 36.
    Y.J. Shin, S.J. Kang, H.J. Jung, Y.J. Park, I. Bae, D.H. Choi, C. Park, ACS Appl. Mater. Interfaces 3, 582 (2011)Google Scholar
  37. 37.
    I. Bae, R.H. Kim, S.K. Hwang, S.J. Kang, C. Park, ACS Appl. Mater. Interfaces 6, 15171 (2014)Google Scholar
  38. 38.
    R.H. Kim, H.J. Kim, I. Bae, S.K. Hwang, D. B. Velusamy, S.M. Cho, K. Takaishi, T. Muto, D. Hashizume, M. Uchiyama, P. Andre, F. Mathevet, B. Heinrich, T. Aoyama, D.-E. Kim, H. Lee, J.-C. Ribierre, C. Park, Nat. Commun. 5, 3583 (2014)Google Scholar
  39. 39.
    D.B. Velusamy, R.H. Kim, K. Takaishi, T. Muto, D. Hashizume, S. Lee, M. Uchiyama, T. Aoyama, J.-C. Ribierre, C. Park, Org. Electron. 15, 2719 (2014)Google Scholar
  40. 40.
    I. Bae, S.K. Hwang, R.H. Kim, S.J. Kang, C. Park, ACS Appl. Mater. Interfaces 5, 10696 (2013)Google Scholar
  41. 41.
    R.C.G. Naber, C. Tanase, P.W.M. Blom, G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setayesh, D.M. de Leeuw, Nat. Mater. 4, 243 (2005)Google Scholar
  42. 42.
    R.C.G. Naber, P.W.M. Blom, G.H. Gelinck, A. W. Marsman, D.M. de Leeuw, Adv. Mater. 17, 2692 (2005)Google Scholar
  43. 43.
    R.C.G. Naber, B. de Boer, D.M. de Leeuw, P. W.M. Blom, Appl. Phys. Lett. 87, 203509 (2005)Google Scholar
  44. 44.
    S.K. Hwang, I. Bae, S.M. Cho, R.H. Kim, H. J. Jung, C. Park, Adv. Funct. Mater. 23, 5484 (2013)Google Scholar
  45. 45.
    S.J. Kang, I. Bae, J.-H. Choi, Y.J. Park, P.J. Jo, Y. Kim, K.J. Kim, J.-M. Myoung, E. Kim, C. Park, J. Mater. Chem. 21, 3619 (2011)Google Scholar
  46. 46.
    S.K. Hwang, I. Bae, R.H. Kim, C. Park, Adv. Mater. 24, 5910 (2012)Google Scholar
  47. 47.
    F.A. Yildirim, C. Ucurum, R.R. Schliewe, R. M. Meixner, H. Goebel, W. Krautschneider, W. Bauhofer, Appl. Phys. Lett. 90, 083501 (2007)Google Scholar
  48. 48.
    S.K. Hwang, S.M. Cho, K.L. Kim, C. Park, Adv. Electron. Mater. 1, 1400042 (2015)Google Scholar
  49. 49.
    R.C.G. Naber, J. Massolt, M. Spijkman, K. Asadi, D.M. de Leeuw, P.W.M. Blom, Appl. Phys. Lett. 90, 113509 (2007)Google Scholar
  50. 50.
    S.K. Hwang, T.J. Park, K.L. Kim, S.M. Cho, B.J. Jeong, C. Park, ACS Appl. Mater. Interfaces 6, 20179 (2014)Google Scholar
  51. 51.
    S.K. Hwang, S.-Y. Min, I. Bae, S.M. Cho, K.L. Kim, T.-W. Lee, C. Park, Small, 10, 1976 (2014)Google Scholar
  52. 52.
    K. Asadi, P.W.M. Blom, D.M. de Leeuw, Appl. Phys. Lett. 99, 053306 (2011)Google Scholar
  53. 53.
    I. Katsouras, D. Zhao, M.-J. Spijkman, M. Li, P.W.M. Blo, D.M. de Leeuw, K. Asadi, Sci. Rep. 5, 12094 (2015)Google Scholar
  54. 54.
    T.N. Ng, B. Russo, B. Krusor, R. Kist, A.C. Arias, Org. Electron. 12, 2012 (2011)Google Scholar
  55. 55.
    G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setayesh, R.C.G. Naber, P.W.M. Blom, D.M. de Leeuw, Appl. Phys. Lett. 87, 092903 (2005)Google Scholar
  56. 56.
    T. Yagi, M. Tatemoto, J. Sako, Polymer J. 12, 209 (1980)Google Scholar
  57. 57.
    K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Ferroelectrics 57, 297 (1984)Google Scholar
  58. 58.
    R. Hasegawa, M. Kobayashi, H. Tadokoro, Polym. J. 3, 591 (1972)Google Scholar
  59. 59.
    R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polym. J. 3, 600 (1972)Google Scholar
  60. 60.
    M.A. Bachmann, J.B. Lando, Macromolecules 14, 40 (1981)Google Scholar
  61. 61.
    H. Ohigashi, Jpn. J. Appl. Phys. 24, 23 (1985)Google Scholar
  62. 62.
    S. Winhold, M.H. Litt, J.B. Lando, Macromolecules, 13, 1178 (1980)Google Scholar
  63. 63.
    G.T. Davis, J.E. McKinney, M.G. Broadhurst, S.C. Roth, J. Appl. Phys. 49, 4998 (1978)Google Scholar
  64. 64.
    B. Servet, J. Rault, J. de Phys. 40, 1145 (1979)Google Scholar
  65. 65.
    T. Furkawa, Phase Transitions 18, 143 (1989)Google Scholar
  66. 66.
    T. Furukawa, G.E. Johnson, H.E. Bair, Ferroelectrics 32, 61 (1981)Google Scholar
  67. 67.
    H.J. Kim, D.E. Kim, Tribol. Lett. 49, 85 (2013)Google Scholar
  68. 68.
    W. Oliver, G. Pharr, J. Mater. Res. 7, 1564 (1992)Google Scholar
  69. 69.
    M. Kanari, H. Kawamata, T. Wakamatsu, I. Ihara, Appl. Phys. Lett. 90, 061921 (2007)Google Scholar
  70. 70.
    J. Malzbender, J.M. J. den Toonder, A.R. Balkenende, G. de With, Mater. Sci. Eng. R. 36, 47 (2002)Google Scholar
  71. 71.
    B.R. Lawn, Proc. R. Soc. 299, 307 (1967)Google Scholar
  72. 72.
    M. Keer, C.H. Kuo, Int. J. Solids Struct. 29, 1819 (1992)Google Scholar
  73. 73.
    A.F. Bower, N.A. Fleck, J. Mech. Phys. Solids 42, 1375 (1994)Google Scholar
  74. 74.
    G.M. Hamilton, Proc. Inst. Mech. Eng. 197C, 53 (1983)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations