Modeling Survival Data Using Frailty Models pp 213-248 | Cite as
Comparison of Gamma and Inverse Gaussian Frailty Models
Chapter
First Online:
Abstract
In this chapter, we compare the gamma frailty and inverse Gaussian frailty models with three different baseline distributions, namely, Gompertz, log-logistic, and bivariate exponential of Marshall and Olkin (1967). We also analyze three data sets, namely, acute leukemia data, litters of rat data, and diabetic retinopathy data with six proposed models based on gamma and inverse Gaussian frailty models.
References
- Ahuja, J.C., Nash, S.W.: The generalized Gompertz Verhulst family distributions. Sankhya A 29, 141–156 (1979)MathSciNetzbMATHGoogle Scholar
- Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart & Winston, New York (1975)Google Scholar
- Bennett, S.: Log-logistic regression model for survival data. Appl. Stat. 32(2), 165–171 (1983)CrossRefGoogle Scholar
- Brooks, S.P., Gelman, A.: Alternative methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998)Google Scholar
- Cox, D.R.: The Analysis of Binary Data. Methenn & Co., London (1970)zbMATHGoogle Scholar
- Cox, D.R.: Regression models and life tables (with discussions). J. R. Stat. Soc. B 34, 187–220 (1972)Google Scholar
- Cox, D.R., Oakes, D.: Analysis of Survival Data. Chapman & Hall, London (1984)Google Scholar
- Freireich, E.J., Gehan, E., Frei, E., Schroeder, L.R., Wolman, I.J., Anbari, R., Burgert, E.O., Mills, S.D., Pinkel, D., Selawry, O.S., Moon, J.H., Gendel, B.R., Spurr, C.L., Storrs, R., Haurani, F., Hoogstraten, B., Lee, S.: The effect of 6-Mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potential useful therapy. Blood 21, 699–716 (1963)CrossRefGoogle Scholar
- Gompertz, B.: On the nature of the function expressive of the law of human mortality, and the new mode of determining the value of life contingencies. Philos. Trans. Roy. Soc. London, 115, 513–585 (1825)Google Scholar
- Gupta, R.C., Akman, O., Lvin, S.: A study of log-logistic model in survival analysis. Biom. J. 41(4), 431–443 (1999)CrossRefGoogle Scholar
- Hanagal, D.D., Kale, B.K.: Large sample tests of \(\lambda _3\) in the bivariate exponential distribution. Stat. Probab. Lett. 12(4), 311–313 (1991)Google Scholar
- Hanagal, D.D., Sharma, R.: A bivariate Gompertz regression model with shared gamma frailty for censored data. Model Assist. Stat. Appl. 7, 161–168 (2012a)CrossRefGoogle Scholar
- Hanagal, D.D., Sharma, R.: Analysis of tumorigenesis data using shared gamma frailty models via Bayesian approach. Int. J. Stat. Manag. Syst. 7, 105–135 (2012c)Google Scholar
- Hanagal, D.D., Sharma, R.: Analysis of tumorigenesis data using shared inverse Gaussian frailty models via Bayesian approach. J. Indian Soc. Probab. Stat. 14, 76–102 (2013b)Google Scholar
- Hanagal, D.D., Sharma, R.: Bayesian estimation of parameters for bivariate Gompertz model with shared gamma shared gamma frailty under random censoring. Stat. Probab. Lett. 82, 1310–1317 (2012b)Google Scholar
- Hanagal, D.D., Sharma, R.: Bayesian inference in Marshall-Olkin bivariate exponential shared gamma frailty regression model under random censoring. Commun. Stat.: Theory Methods 44(1), 24–47 (2015a)MathSciNetCrossRefGoogle Scholar
- Hanagal, D.D., Sharma, R.: Comparison of frailty models for acute leukaemia data under Gompertz baseline distribution. Commun. Stat.: Theory Methods 44(7), 1338–1350 (2015b)MathSciNetCrossRefGoogle Scholar
- Hanagal, D.D., Sharma, R.: Modeling heterogeneity for bivariate survival data by shared gamma frailty regression model. Model Assist. Stat. Appl. 8, 85–102 (2013a)CrossRefGoogle Scholar
- Hanagal, D.D.: Inference procedures in some bivariate exponential models under hybrid random censoring. Stat. Pap. 38(2), 169–189 (1997)MathSciNetCrossRefGoogle Scholar
- Hanagal, D.D.: Selection of a better component in bivariate exponential models. Stat. Methods Appl. 5(2), 229–238 (1996)CrossRefGoogle Scholar
- Hanagal, D.D.: Some inference results in bivariate exponential distributions based on censored samples. Commun. Stat. Theory Methods 21(5), 1273–1295 (1992)MathSciNetCrossRefGoogle Scholar
- Hanagal, D.D.: Testing reliability in a bivariate exponential stress-strength model. J. Indian Stat. Assoc. 33, 41–45 (1995)Google Scholar
- Hanagal, D.D.: Modeling Survival Data Using Frailty Models. Chapman and Hall, New York (2011)CrossRefGoogle Scholar
- Hanagal, D.D., Kale, B.K.: Large sample tests for testing symmetry and independence in some bivariate exponential models. Commun. Stat. Theory Methods 21(9), 2625–2643 (1992)MathSciNetCrossRefGoogle Scholar
- Harris, R.: Reliability applications of a bivariate exponential distribution. J. Oper. Res. Soc. Am. 16, 18–27 (1968)Google Scholar
- Hougaard, P.: Analysis of Multivariate Survival Data. Springer, New York (2000)CrossRefGoogle Scholar
- Ibrahim, J.G., Chen, M.H., Sinha, D.: Bayesian Survival Analysis. Springer, New York (2001)CrossRefGoogle Scholar
- Langlands, A.O., Pocock, S.J., Kerr, G.R., Gore, S.M.: Long-term survival of patients with breast cancer: a study of the curability of the disease. Br. Med. J. 2, 1247–1251 (1979)CrossRefGoogle Scholar
- Mantel, N., Bohidar, N.R., Ciminera, J.L.: Mantel-Haenzel anlysis of litter-matched time-to-response data, with modifications for recovery of interlitter information. Cancer Res. 37, 3863–3868 (1977)Google Scholar
- Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967)MathSciNetCrossRefGoogle Scholar
- O’Quigley, J., Struthers, L.: Survival models based upon the logistic and loglogistic distributions. Comput. Programs Biomed. Res. 15, 3–12 (1982)CrossRefGoogle Scholar
- Osman, M.I.: A new model for analyzing the survival of heterogeneous data. Ph.D. thesis, Case Western Reserve University, USA (1987)Google Scholar
- Sahu, S.K., Dey, D.K.: A comparison of frailty and other models for bivariate survival data. Lifetime data anal. 6, 207–228 (2000)Google Scholar
- Sahu, S.K., Dey, D.K., Aslanidou, H., Sinha, D.: A Weibull regression model with gamma frailties for multivariate survival data. Life Time Data Anal. 3, 123–137 (1997)CrossRefGoogle Scholar
- Santos, C.A., Achcar, J.A.: A Bayesian analysis for multivariate survival data in the presence of covariates. Jr. Stat. Theor. Appl. 9, 233–253 (2010)Google Scholar
- Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A.: Bayesian measure of model complexity and fit (with discussion). J. R. Stat. Soc. B 64, 583–639 (2002)MathSciNetCrossRefGoogle Scholar
- Therneau, T.M., Grambsch, P.M.: Modeling Survival Data: Extending the Cox Model. Springer, New York (2000)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019