Comparison of Gamma and Inverse Gaussian Frailty Models

  • David D. HanagalEmail author
Part of the Industrial and Applied Mathematics book series (INAMA)


In this chapter, we compare the gamma frailty and inverse Gaussian frailty models with three different baseline distributions, namely, Gompertz, log-logistic, and bivariate exponential of Marshall and Olkin (1967). We also analyze three data sets, namely, acute leukemia data, litters of rat data, and diabetic retinopathy data with six proposed models based on gamma and inverse Gaussian frailty models.


  1. Ahuja, J.C., Nash, S.W.: The generalized Gompertz Verhulst family distributions. Sankhya A 29, 141–156 (1979)MathSciNetzbMATHGoogle Scholar
  2. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart & Winston, New York (1975)Google Scholar
  3. Bennett, S.: Log-logistic regression model for survival data. Appl. Stat. 32(2), 165–171 (1983)CrossRefGoogle Scholar
  4. Brooks, S.P., Gelman, A.: Alternative methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998)Google Scholar
  5. Cox, D.R.: The Analysis of Binary Data. Methenn & Co., London (1970)zbMATHGoogle Scholar
  6. Cox, D.R.: Regression models and life tables (with discussions). J. R. Stat. Soc. B 34, 187–220 (1972)Google Scholar
  7. Cox, D.R., Oakes, D.: Analysis of Survival Data. Chapman & Hall, London (1984)Google Scholar
  8. Freireich, E.J., Gehan, E., Frei, E., Schroeder, L.R., Wolman, I.J., Anbari, R., Burgert, E.O., Mills, S.D., Pinkel, D., Selawry, O.S., Moon, J.H., Gendel, B.R., Spurr, C.L., Storrs, R., Haurani, F., Hoogstraten, B., Lee, S.: The effect of 6-Mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potential useful therapy. Blood 21, 699–716 (1963)CrossRefGoogle Scholar
  9. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and the new mode of determining the value of life contingencies. Philos. Trans. Roy. Soc. London, 115, 513–585 (1825)Google Scholar
  10. Gupta, R.C., Akman, O., Lvin, S.: A study of log-logistic model in survival analysis. Biom. J. 41(4), 431–443 (1999)CrossRefGoogle Scholar
  11. Hanagal, D.D., Kale, B.K.: Large sample tests of \(\lambda _3\) in the bivariate exponential distribution. Stat. Probab. Lett. 12(4), 311–313 (1991)Google Scholar
  12. Hanagal, D.D., Sharma, R.: A bivariate Gompertz regression model with shared gamma frailty for censored data. Model Assist. Stat. Appl. 7, 161–168 (2012a)CrossRefGoogle Scholar
  13. Hanagal, D.D., Sharma, R.: Analysis of tumorigenesis data using shared gamma frailty models via Bayesian approach. Int. J. Stat. Manag. Syst. 7, 105–135 (2012c)Google Scholar
  14. Hanagal, D.D., Sharma, R.: Analysis of tumorigenesis data using shared inverse Gaussian frailty models via Bayesian approach. J. Indian Soc. Probab. Stat. 14, 76–102 (2013b)Google Scholar
  15. Hanagal, D.D., Sharma, R.: Bayesian estimation of parameters for bivariate Gompertz model with shared gamma shared gamma frailty under random censoring. Stat. Probab. Lett. 82, 1310–1317 (2012b)Google Scholar
  16. Hanagal, D.D., Sharma, R.: Bayesian inference in Marshall-Olkin bivariate exponential shared gamma frailty regression model under random censoring. Commun. Stat.: Theory Methods 44(1), 24–47 (2015a)MathSciNetCrossRefGoogle Scholar
  17. Hanagal, D.D., Sharma, R.: Comparison of frailty models for acute leukaemia data under Gompertz baseline distribution. Commun. Stat.: Theory Methods 44(7), 1338–1350 (2015b)MathSciNetCrossRefGoogle Scholar
  18. Hanagal, D.D., Sharma, R.: Modeling heterogeneity for bivariate survival data by shared gamma frailty regression model. Model Assist. Stat. Appl. 8, 85–102 (2013a)CrossRefGoogle Scholar
  19. Hanagal, D.D.: Inference procedures in some bivariate exponential models under hybrid random censoring. Stat. Pap. 38(2), 169–189 (1997)MathSciNetCrossRefGoogle Scholar
  20. Hanagal, D.D.: Selection of a better component in bivariate exponential models. Stat. Methods Appl. 5(2), 229–238 (1996)CrossRefGoogle Scholar
  21. Hanagal, D.D.: Some inference results in bivariate exponential distributions based on censored samples. Commun. Stat. Theory Methods 21(5), 1273–1295 (1992)MathSciNetCrossRefGoogle Scholar
  22. Hanagal, D.D.: Testing reliability in a bivariate exponential stress-strength model. J. Indian Stat. Assoc. 33, 41–45 (1995)Google Scholar
  23. Hanagal, D.D.: Modeling Survival Data Using Frailty Models. Chapman and Hall, New York (2011)CrossRefGoogle Scholar
  24. Hanagal, D.D., Kale, B.K.: Large sample tests for testing symmetry and independence in some bivariate exponential models. Commun. Stat. Theory Methods 21(9), 2625–2643 (1992)MathSciNetCrossRefGoogle Scholar
  25. Harris, R.: Reliability applications of a bivariate exponential distribution. J. Oper. Res. Soc. Am. 16, 18–27 (1968)Google Scholar
  26. Hougaard, P.: Analysis of Multivariate Survival Data. Springer, New York (2000)CrossRefGoogle Scholar
  27. Ibrahim, J.G., Chen, M.H., Sinha, D.: Bayesian Survival Analysis. Springer, New York (2001)CrossRefGoogle Scholar
  28. Langlands, A.O., Pocock, S.J., Kerr, G.R., Gore, S.M.: Long-term survival of patients with breast cancer: a study of the curability of the disease. Br. Med. J. 2, 1247–1251 (1979)CrossRefGoogle Scholar
  29. Mantel, N., Bohidar, N.R., Ciminera, J.L.: Mantel-Haenzel anlysis of litter-matched time-to-response data, with modifications for recovery of interlitter information. Cancer Res. 37, 3863–3868 (1977)Google Scholar
  30. Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967)MathSciNetCrossRefGoogle Scholar
  31. O’Quigley, J., Struthers, L.: Survival models based upon the logistic and loglogistic distributions. Comput. Programs Biomed. Res. 15, 3–12 (1982)CrossRefGoogle Scholar
  32. Osman, M.I.: A new model for analyzing the survival of heterogeneous data. Ph.D. thesis, Case Western Reserve University, USA (1987)Google Scholar
  33. Sahu, S.K., Dey, D.K.: A comparison of frailty and other models for bivariate survival data. Lifetime data anal. 6, 207–228 (2000)Google Scholar
  34. Sahu, S.K., Dey, D.K., Aslanidou, H., Sinha, D.: A Weibull regression model with gamma frailties for multivariate survival data. Life Time Data Anal. 3, 123–137 (1997)CrossRefGoogle Scholar
  35. Santos, C.A., Achcar, J.A.: A Bayesian analysis for multivariate survival data in the presence of covariates. Jr. Stat. Theor. Appl. 9, 233–253 (2010)Google Scholar
  36. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A.: Bayesian measure of model complexity and fit (with discussion). J. R. Stat. Soc. B 64, 583–639 (2002)MathSciNetCrossRefGoogle Scholar
  37. Therneau, T.M., Grambsch, P.M.: Modeling Survival Data: Extending the Cox Model. Springer, New York (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Symbiosis Statistical InstituteSymbiosis International UniversityPuneIndia

Personalised recommendations