Model Organisms for Understanding Peroxisomal Disorders

  • Shigeo TakashimaEmail author
  • Nobuyuki Shimozawa


Peroxisomal disorders are congenital human diseases caused by the dysfunction of peroxisomes, which are small vesicular organelles distributed in the cytoplasm. In patients suffering from these disorders, multiple defects manifest in a variety of tissues and organs, such as the brain, spinal cord, peripheral nerves, eyes, kidneys, liver, spleen, and bone. A number of biological metabolites are synthesized and degraded in the peroxisomes, such that the metabolites fluctuate severely in patients with peroxisomal disorders. A link between peroxisomal metabolites and symptoms of peroxisomal disorders has long been suspected; however, we have only limited knowledge about the pathology of this disease in humans due to the rarity of peroxisomal disorders. To overcome this problem, model organisms of peroxisomal disorders were established and studied in detail. These models successfully recapitulate the major human symptoms and have become powerful tools to understand the biological basis of the disease pathology and the development of therapeutic strategies against it.


Peroxisomal disorders Peroxisome Very long chain fatty acid Phytanic acid Bile acid intermediates Plasmalogens Mouse Fruit fly Zebrafish Model organism 


  1. Atshaves BP, McIntosh AL, Landrock D, Payne HR, Mackie JT, Maeda N, Ball J, Schroeder F, Kier AB (2007) Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. Am J Physiol Gastrointest Liver Physiol 292:G939–G951PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D et al (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP (2000) Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275:16329–16336PubMedCrossRefPubMedCentralGoogle Scholar
  4. Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, Chaudhury R, Moser A, Steinberg S (2010) A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 99:408–416PubMedCrossRefPubMedCentralGoogle Scholar
  5. Brites P, Motley AM, Gressens P, Mooyer PAW, Ploegaert I, Everts V, Evrard P, Carmeliet P, Dewerchin M, Schoonjans L et al (2003) Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet 12:2255–2267PubMedCrossRefPubMedCentralGoogle Scholar
  6. Brites P, Mooyer PA, El Mrabet L, Waterham HR, Wanders RJ (2009) Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 132:482–492PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bülow MH, Wingen C, Senyilmaz D, Gosejacob D, Sociale M, Bauer R, Schulze H, Sandhoff K, Teleman AA, Hoch M et al (2018) Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome-deficient. Mol Biol Cell 29:396–407PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen H, Liu Z, Huang X (2010) Drosophila models of peroxisomal biogenesis disorder: peroxins are required for spermatogenesis and very-long-chain fatty acid metabolism. Hum Mol Genet 19:494–505PubMedCrossRefPubMedCentralGoogle Scholar
  9. da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJ, Just WW, Kirschner DA et al (2014) Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 124:2560–2570PubMedPubMedCentralCrossRefGoogle Scholar
  10. De Munter S, Verheijden S, Vanderstuyft E, Malheiro AR, Brites P, Gall D, Schiffmann SN, Baes M (2016) Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency. Neurobiol Dis 94:157–168PubMedCrossRefGoogle Scholar
  11. Fan CY, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N et al (1996) Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 271:24698–24710PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645PubMedCrossRefPubMedCentralGoogle Scholar
  13. Faust PL (2003) Abnormal cerebellar histogenesis in PEX2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. J Comp Neurol 461:394–413PubMedCrossRefGoogle Scholar
  14. Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293–1305PubMedPubMedCentralCrossRefGoogle Scholar
  15. Faust PL, Su HM, Moser A, Moser HW (2001) The peroxisome deficient PEX2 Zellweger mouse: pathologic and biochemical correlates of lipid dysfunction. J Mol Neurosci 16:221–289CrossRefGoogle Scholar
  16. Faust JE, Manisundaram A, Ivanova PT, Milne SB, Summerville JB, Brown HA, Wangler M, Stern M, McNew JA (2014) Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster. PLoS One 9:e100213PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ferdinandusse S, Kostopoulos P, Denis S, Rusch H, Overmars H, Dillmann U, Reith W, Haas D, Wanders RJA, Duran M et al (2006) Mutations in the gene encoding Peroxisomal Sterol Carrier Protein X (SCPx) Cause Leukencephalopathy with Dystonia and motor neuropathy. Am J Hum Genet 78:1046–1052PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O et al (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24:361–370PubMedCrossRefPubMedCentralGoogle Scholar
  19. Forss-Petter S, Werner H, Berger J, Lassmann H, Molzer B, Schwab MH, Bernheimer H, Zimmermann F, Nave KA (1997) Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50:829–543PubMedCrossRefGoogle Scholar
  20. Hanson MG, Fregoso VL, Vrana JD, Tucker CL, Niswander LA (2014) Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 395:84–95PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hiebler S, Masuda T, Hacia JG, Moser AB, Faust PL, Liu A, Chowdhury N, Huang N, Lauer A, Bennett J et al (2014) The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. Mol Genet Metab 111:522–532PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hulshagen L, Krysko O, Bottelbergs A, Huyghe S, Klein R, Van Veldhoven PP, De Deyn PP, D’Hooge R, Hartmann D, Baes M (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28:4015–4027PubMedPubMedCentralCrossRefGoogle Scholar
  23. Huyghe S, Schmalbruch H, De Gendt K, Verhoeven G, Guillou F, Van Veldhoven PP, Baes M (2006a) Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in sertoli cells and male fertility in mice. Endocrinology 147:2228–2236PubMedCrossRefPubMedCentralGoogle Scholar
  24. Huyghe S, Schmalbruch H, Hulshagen L, Van Veldhoven P, Baes M, Hartmann D (2006b) Peroxisomal multifunctional protein-2 deficiency causes motor deficits and glial lesions in the adult central nervous system. Am J Pathol 168:1321–1334PubMedPubMedCentralCrossRefGoogle Scholar
  25. Janssen A, Gressens P, Grabenbauer M, Baumgart E, Schad A, Vanhorebeek I, Brouwers A, Declercq PE, Fahimi D, Evrard P et al (2003) Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. J Neurosci 23:9732–9741PubMedPubMedCentralCrossRefGoogle Scholar
  26. Keane MH, Overmars H, Wikander TM, Ferdinandusse S, Duran M, Wanders RJ, Faust PL (2007) Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice. Hepatology 45:982–997PubMedCrossRefGoogle Scholar
  27. Kobayashi T, Shinnoh N, Kondo A, Yamada T (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232:631–636PubMedCrossRefGoogle Scholar
  28. Komljenovic D, Sandhoff R, Teigler A, Heid H, Just WW, Gorgas K (2009) Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell Tissue Res 337:281–299PubMedCrossRefGoogle Scholar
  29. Krysko O, Hulshagen L, Janssen A, Schütz G, Klein R, De Bruycker M, Espeel M, Gressens P, Baes M (2007) Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res 85:58–72PubMedCrossRefGoogle Scholar
  30. Krysko O, Stevens M, Langenberg T, Fransen M, Espeel M, Baes M (2010) Peroxisomes in zebrafish: distribution pattern and knockdown studies. Histochem Cell Biol 134:39–51PubMedCrossRefPubMedCentralGoogle Scholar
  31. Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ (2002a) PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240PubMedPubMedCentralCrossRefGoogle Scholar
  32. Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002b) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365PubMedPubMedCentralCrossRefGoogle Scholar
  33. Liegel RP, Ronchetti A, Sidjanin DJ (2014) Alkylglycerone phosphate synthase (AGPS) deficient mice: models for rhizomelic chondrodysplasia punctate type 3 (RCDP3) malformation syndrome. Mol Genet Metab Rep 1:299–311PubMedPubMedCentralCrossRefGoogle Scholar
  34. Liegel R, Chang B, Dubielzig R, Sidjanin DJ (2011) Blind sterile 2 (bs2), a hypomorphic mutation in Agps, results in cataracts and male sterility in mice. Mol Genet Metab 103:51–59PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lu JF, Lawler AM, Watkins PA, Powers JM, Moser AB, Moser HW, Smith KD (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci U S A 94:9366–9371PubMedPubMedCentralCrossRefGoogle Scholar
  36. Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA (2011) A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 4:659–672PubMedPubMedCentralCrossRefGoogle Scholar
  37. Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI (2003) Pex13 Inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957PubMedPubMedCentralCrossRefGoogle Scholar
  38. Nakayama M, Sato H, Okuda T, Fujisawa N, Kono N, Arai H, Suzuki E, Umeda M, Ishikawa HO, Matsuno K (2011) Drosophila carrying Pex3 or Pex16 mutations are models of zellweger syndrome that reflect its symptoms associated with the absence of peroxisomes. PLoS One 6:e22984PubMedPubMedCentralCrossRefGoogle Scholar
  39. Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11:499–505PubMedCrossRefPubMedCentralGoogle Scholar
  40. Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA, Wieland F, Gorgas K, Just WW (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12:1881–1895PubMedCrossRefGoogle Scholar
  41. Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 4:e5090PubMedPubMedCentralCrossRefGoogle Scholar
  42. Savolainen K, Kotti TJ, Schmitz W, Savolainen TI, Sormunen RT, Ilves M, Vainio SJ, Conzelmann E, Hiltunen JK (2004) A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 13:955–965PubMedCrossRefGoogle Scholar
  43. Schutgens RBH, Bouman IW, Nijenhuis AA, Wanders RJA, Frumau MEJ (1993) Profiles of very-long-chain fatty acids in plasma, fibroblasts, and blood cells in Zellweger syndrome, X-linked adrenoleukodystrophy, and rhizomelic chondrodysplasia punctata. Clin Chem 39:1632–1637PubMedCrossRefGoogle Scholar
  44. Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KWA, Wanders RJA et al (1998) Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12:1189–1201PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sellin J, Wingen C, Gosejacob D, Senyilmaz D, Hänschke L, Büttner S, Meyer K, Bano D, Nicotera P, Teleman AA et al (2018) Dietary rescue of lipotoxicity-induced mitochondrial damage in Peroxin19 mutants. PLoS Biol 16:e2004893PubMedPubMedCentralCrossRefGoogle Scholar
  46. Shaffer JB, Preston KE (1990) Molecular analysis of an acatalasemic mouse mutant. Biochem Biophys Res Commun 173:1043–1050PubMedCrossRefPubMedCentralGoogle Scholar
  47. Sheridan R, Lampe K, Shanmukhappa SK, Putnam P, Keddache M, Divanovic S, Bezerra J, Hoebe K (2011) Lampe1: an ENU-germline mutation causing spontaneous hepatosteatosis identified through targeted exon-enrichment and next-generation sequencing. PLoS One 6:e21979PubMedPubMedCentralCrossRefGoogle Scholar
  48. Strachan LR, Stevenson TJ, Freshner B, Keefe MD, Miranda Bowles D, Bonkowsky JL (2017) A zebrafish model of X-linked adrenoleukodystrophy recapitulates key disease features and demonstrates a developmental requirement for abcd1 in oligodendrocyte patterning and myelination. Hum Mol Genet 26:3600–3614PubMedPubMedCentralCrossRefGoogle Scholar
  49. Teigler A, Komljenovic D, Draguhn A, Gorgas K, Just WW (2009) Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum Mol Genet 18:1897–1908PubMedPubMedCentralCrossRefGoogle Scholar
  50. Thieringer H, Moellers B, Dodt G, Kunau W-H, Driscoll M (2003) Modeling human peroxisome biogenesis disorders in the nematode Caenorhabditis elegans. J Cell Sci 116:1797–1804PubMedCrossRefPubMedCentralGoogle Scholar
  51. Weng H, Ji X, Naito Y, Endo K, Ma X, Takahashi R, Shen C, Hirokawa G, Fukushima Y, Iwai N (2013) Pex11α deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab 304:E187–E196PubMedCrossRefGoogle Scholar
  52. Zhang R, Chen L, Jiralerspong S, Snowden A, Steinberg S, Braverman N (2010) Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds. Proc Natl Acad Sci U S A 107:5569–5574PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Genomics Research, Life Science Research CenterGifu UniversityGifu cityJapan
  2. 2.Division of Genomics Research, Life Science Research CenterGifu UniversityGifuJapan
  3. 3.Department of PediatricsGifu University School of MedicineGifuJapan

Personalised recommendations