Peroxisome Biogenesis

  • Kosuke Kawaguchi
  • Tsuneo ImanakaEmail author


It is considered most likely at present that peroxisomes are endoplasmic reticulum (ER)-derived organelles. The biosynthesis of peroxisomes in mammals involves three different processes, the formation of the pre-peroxisome from the ER, the import of the peroxisomal membrane and matrix proteins to the pre-peroxisome, and the growth and division of the peroxisome. Very recently a new process was reported, i.e. that pre-peroxisomes are formed by the fusion of vesicles derived from the ER and outer mitochondrial membranes. Based on recent findings, we discuss where the pre-peroxisomes are formed and become organized into mature peroxisomes. It is known that many proteins, called “peroxins”, are encoded by PEX genes and involved in peroxisome biogenesis, including the targeting of peroxisomal matrix and membrane proteins. To date, 36 peroxins have been identified. Here, recent progress in the mechanisms by which peroxisomal matrix and membrane proteins are targeted to the peroxisome are discussed. In addition, the selective targeting of ATP-binding cassette (ABC) transporter subfamily D to peroxisomes as well as lysosomes is also covered.


Peroxisome Biogenesis Endoplasmic reticulum Mitochondria Targeting ABC transporter 



ATP-binding cassette


Endoplasmic reticulum


Peroxisomal membrane protein


Pre-peroxisomal vesicle


Peroxisomal targeting signal




Very long chain fatty acid



The publication is supported in part by a Grant-in-Aid for Intractable Diseases from the Ministry of health, Labour and Welfare of Japan, and by Early-Career Scientists from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Pacific Edit reviewed the manuscript prior to submission.


  1. Agrawal G et al (2011) Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc Natl Acad Sci U S A 108(22):9113–9118PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agrawal G et al (2016) Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER. J Cell Biol 212(3):335–348PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agrawal G et al (2017) Functional regions of the peroxin Pex19 necessary for peroxisome biogenesis. J Biol Chem 292(27):11547–11560PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aranovich A et al (2014) PEX16 contributes to peroxisome maintenance by constantly trafficking PEX3 via the ER. J Cell Sci 127(Pt 17):3675–3686PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baerends RJ et al (2000) A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. J Biol Chem 275(14):9986–9995PubMedCrossRefGoogle Scholar
  6. Banerjee SK et al (2005) Identification of trypanosomatid PEX19: functional characterization reveals impact on cell growth and glycosome size and number. Mol Biochem Parasitol 142(1):47–55PubMedCrossRefGoogle Scholar
  7. Biermanns M, Gartner J (2001) Targeting elements in the amino-terminal part direct the human 70-kDa peroxisomal integral membrane protein (PMP70) to peroxisomes. Biochem Biophys Res Commun 285(3):649–655PubMedCrossRefGoogle Scholar
  8. Birschmann I et al (2003) Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol Biol Cell 14(6):2226–2236PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808(3):937–946PubMedCrossRefGoogle Scholar
  10. Castro IG et al (2018) A role for mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 19(3):229–242PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen Y et al (2014) Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat Commun 5:5790PubMedCrossRefGoogle Scholar
  12. Dassa E, Bouige P (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152(3–4):211–229PubMedCrossRefGoogle Scholar
  13. de Duve C (1982) Peroxisomes and related particles in historical perspective. Ann N Y Acad Sci 386:1–4PubMedCrossRefGoogle Scholar
  14. Debelyy MO et al (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286(32):28223–28234PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dyer JM et al (1996) The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J Cell Biol 133(2):269–280PubMedCrossRefGoogle Scholar
  16. Egea PF et al (2005) Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct Biol 15(2):213–220PubMedCrossRefGoogle Scholar
  17. El Magraoui F et al (2012) The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J 279(11):2060–2070PubMedCrossRefGoogle Scholar
  18. El Magraoui F et al (2014) The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor. PLoS One 9(8):e105894PubMedPubMedCentralCrossRefGoogle Scholar
  19. Elgersma Y et al (1997) Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J 16(24):7326–7341PubMedPubMedCentralCrossRefGoogle Scholar
  20. Erdmann R, Schliebs W (2005) Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 6(9):738–742PubMedCrossRefGoogle Scholar
  21. Fakieh MH et al (2013) Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain. Biol Open 2(8):829–837PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fang Y et al (2004) PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J Cell Biol 164(6):863–875PubMedPubMedCentralCrossRefGoogle Scholar
  23. Farre JC et al (2017) A new yeast peroxin, Pex36, a functional homolog of mammalian PEX16, functions in the ER-to-peroxisome traffic of peroxisomal membrane proteins. J Mol Biol 429(23):3743–3762PubMedPubMedCentralCrossRefGoogle Scholar
  24. Farre JC et al (2019) Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Rep 20(1)Google Scholar
  25. Faust JE et al (2012) An inventory of peroxisomal proteins and pathways in Drosophila melanogaster. Traffic 13(10):1378–1392PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ferdinandusse S et al (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24(2):361–370PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fodor K et al (2012) Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 10(4):e1001309PubMedPubMedCentralCrossRefGoogle Scholar
  28. Francisco T et al (2014) Ubiquitin in the peroxisomal protein import pathway. Biochimie 98:29–35PubMedCrossRefGoogle Scholar
  29. Fransen M et al (2001) Human pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Mol Cell Biol 21(13):4413–4424PubMedPubMedCentralCrossRefGoogle Scholar
  30. Freitas MO et al (2011) PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J Biol Chem 286(47):40509–40519PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fujiki Y (2016) Peroxisome biogenesis and human peroxisome-deficiency disorders. Proc Jpn Acad Ser B Phys Biol Sci 92(10):463–477PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fujiki Y et al (1984) Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc Natl Acad Sci U S A 81(22):7127–7131PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fujiki Y et al (2006) Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim Biophys Acta 1763(12):1639–1646PubMedCrossRefGoogle Scholar
  34. Fujiki Y et al (2012) New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. Biochim Biophys Acta 1823(1):145–149PubMedCrossRefPubMedCentralGoogle Scholar
  35. Geillon F et al (2014) Structure-function analysis of peroxisomal ATP-binding cassette transporters using chimeric dimers. J Biol Chem 289(35):24511–24520PubMedPubMedCentralCrossRefGoogle Scholar
  36. Goldstein G et al (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A 72(1):11–15PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gonzalez E, Beevers H (1976) Role of the endoplasmic reticulum in glyoxysome formation in castor bean endosperm. Plant Physiol 57(3):406–409PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goto S et al (2011) Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. Plant Cell 23(4):1573–1587PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gotte K et al (1998) Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18(1):616–628PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gould SG et al (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105(6 Pt 2):2923–2931CrossRefGoogle Scholar
  41. Gould SJ et al (1990) Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J 9(1):85–90PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gouveia AM et al (2000) Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 275(42):32444–32451PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gouveia AM et al (2003a) Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J Biol Chem 278(7):4389–4392PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gouveia AM et al (2003b) Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem 278(1):226–232PubMedCrossRefPubMedCentralGoogle Scholar
  45. Grimm I et al (2012) The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. Biochim Biophys Acta 1823(1):150–158PubMedCrossRefPubMedCentralGoogle Scholar
  46. Grou CP et al (2008) Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem 283(21):14190–14197PubMedCrossRefGoogle Scholar
  47. Grou CP et al (2009) The peroxisomal protein import machinery—a case report of transient ubiquitination with a new flavor. Cell Mol Life Sci 66(2):254–262PubMedCrossRefGoogle Scholar
  48. Grou CP et al (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287(16):12815–12827PubMedPubMedCentralCrossRefGoogle Scholar
  49. Grunau S et al (2009) Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 10(4):451–460Google Scholar
  50. Gunkel K et al (2004) Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery. Mol Biol Cell 15(3):1347–1355PubMedPubMedCentralCrossRefGoogle Scholar
  51. Haan GJ et al (2002) Hansenula polymorpha Pex3p is a peripheral component of the peroxisomal membrane. J Biol Chem 277(29):26609–26617PubMedCrossRefGoogle Scholar
  52. Halbach A et al (2005) Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved. J Biol Chem 280(22):21176–21182PubMedCrossRefGoogle Scholar
  53. Halbach A et al (2006) Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J Cell Sci 119(Pt 12):2508–2517PubMedCrossRefGoogle Scholar
  54. Hegde RS, Keenan RJ (2011) Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 12(12):787–798PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hensel A et al (2011) Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286(50):43495–43505PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hoepfner D et al (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122(1):85–95PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hohfeld J et al (1991) PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis. J Cell Biol 114(6):1167–1178PubMedCrossRefPubMedCentralGoogle Scholar
  58. Honsho M, Fujiki Y (2001) Topogenesis of peroxisomal membrane protein requires a short, positively charged intervening-loop sequence and flanking hydrophobic segments. study using human membrane protein PMP34. J Biol Chem 276(12):9375–9382PubMedCrossRefPubMedCentralGoogle Scholar
  59. Honsho M, Fujiki Y (2017) Plasmalogen homeostasis—regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 591(18):2720–2729PubMedCrossRefGoogle Scholar
  60. Hua R et al (2015) Multiple domains in PEX16 mediate its trafficking and recruitment of peroxisomal proteins to the ER. Traffic 16(8):832–852PubMedCrossRefGoogle Scholar
  61. Huhse B et al (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J Cell Biol 140(1):49–60PubMedPubMedCentralCrossRefGoogle Scholar
  62. Imanaka T et al (1996) Insertion of the 70-kDa peroxisomal membrane protein into peroxisomal membranes in vivo and in vitro. J Biol Chem 271(7):3706–3713PubMedPubMedCentralCrossRefGoogle Scholar
  63. Imanaka T et al (1999) Characterization of the 70-kDa peroxisomal membrane protein, an ATP binding cassette transporter. J Biol Chem 274(17):11968–11976PubMedPubMedCentralCrossRefGoogle Scholar
  64. Islinger M et al (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes—evidence for a natural piggyback import mechanism in mammals. Traffic 10(11):1711–1721PubMedCrossRefGoogle Scholar
  65. Iwashita S et al (2010) Multiple organelle-targeting signals in the N-terminal portion of peroxisomal membrane protein PMP70. J Biochem 147(4):581–590PubMedCrossRefGoogle Scholar
  66. Jones JM et al (2001) Multiple distinct targeting signals in integral peroxisomal membrane proteins. J Cell Biol 153(6):1141–1150PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jones JM et al (2004) PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol 164(1):57–67PubMedPubMedCentralCrossRefGoogle Scholar
  68. Joshi S et al (2012) Phosphorylation-dependent Pex11p and Fis1p interaction regulates peroxisome division. Mol Biol Cell 23(7):1307–1315PubMedPubMedCentralCrossRefGoogle Scholar
  69. Joshi AS et al (2016) A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis. J Cell Biol 215(4):515–529PubMedPubMedCentralCrossRefGoogle Scholar
  70. Joshi AS et al (2018) Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun 9(1):2940PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jung S et al (2010) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285(9):6739–6749PubMedCrossRefGoogle Scholar
  72. Kamijo K et al (1990) The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem 265(8):4534–4540PubMedGoogle Scholar
  73. Kammerer S et al (1998) Cloning and characterization of the gene encoding the human peroxisomal assembly protein Pex3p. FEBS Lett 429(1):53–60PubMedCrossRefGoogle Scholar
  74. Karnik SK, Trelease RN (2005) Arabidopsis peroxin 16 coexists at steady state in peroxisomes and endoplasmic reticulum. Plant Physiol 138(4):1967–1981PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kashiwayama Y et al (2005) Role of Pex19p in the targeting of PMP70 to peroxisome. Biochim Biophys Acta 1746(2):116–128PubMedCrossRefGoogle Scholar
  76. Kashiwayama Y et al (2007) Hydrophobic regions adjacent to transmembrane domains 1 and 5 are important for the targeting of the 70-kDa peroxisomal membrane protein. J Biol Chem 282(46):33831–33844PubMedCrossRefGoogle Scholar
  77. Kashiwayama Y et al (2009) 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 315(2):190–205PubMedCrossRefGoogle Scholar
  78. Kawaguchi K et al (2016) Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 6:30183PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kerscher O et al (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180PubMedCrossRefGoogle Scholar
  80. Kerssen D et al (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281(37):27003–27015PubMedCrossRefGoogle Scholar
  81. Kiel JA et al (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7(10):1291–1303PubMedCrossRefGoogle Scholar
  82. Kim PK et al (2006) The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173(4):521–532PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kinoshita N et al (1998) Newly identified Chinese hamster ovary cell mutants are defective in biogenesis of peroxisomal membrane vesicles (Peroxisomal ghosts), representing a novel complementation group in mammals. J Biol Chem 273(37):24122–24130PubMedCrossRefGoogle Scholar
  84. Klein AT et al (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277(28):25011–25019PubMedCrossRefGoogle Scholar
  85. Knoops K et al (2014) Preperoxisomal vesicles can form in the absence of Pex3. J Cell Biol 204(5):659–668PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kragt A et al (2005) Endoplasmic reticulum-directed Pex3p routes to peroxisomes and restores peroxisome formation in a Saccharomyces cerevisiae pex3Δ strain. J Biol Chem 280(40):34350–34357PubMedCrossRefGoogle Scholar
  87. Lametschwandtner G et al (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273(50):33635–33643PubMedCrossRefGoogle Scholar
  88. Lazarow PB (2006) The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta 1763(12):1599–1604PubMedCrossRefGoogle Scholar
  89. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530CrossRefGoogle Scholar
  90. Lee A et al (2014) Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: common features in eukaryotic organisms. Biochem Biophys Res Commun 453(3):612–618PubMedCrossRefGoogle Scholar
  91. Leon S et al (2006a) Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim Biophys Acta 1763(12):1552–1564PubMedCrossRefGoogle Scholar
  92. Leon S et al (2006b) Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J Cell Biol 172(1):67–78PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lingner T et al (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23(4):1556–1572PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lisenbee CS et al (2003) Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type Arabidopsis cells. Plant Physiol 132(2):870–882PubMedPubMedCentralCrossRefGoogle Scholar
  95. Liu X, Subramani S (2013) Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. J Biol Chem 288(10):7230–7240PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lombard-Platet G et al (1996) A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc Natl Acad Sci U S A 93(3):1265–1269PubMedPubMedCentralCrossRefGoogle Scholar
  97. Loson OC et al (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24(5):659–667PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ma C et al (2009) The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 20(16):3680–3689PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ma C et al (2013) Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 288(38):27220–27231PubMedPubMedCentralCrossRefGoogle Scholar
  100. Marzioch M et al (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J 13(20):4908–4918PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mast FD et al (2016) Peroxins Pex30 and Pex29 dynamically associate with reticulons to regulate peroxisome biogenesis from the endoplasmic reticulum. J Biol Chem 291(30):15408–15427PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mast FD et al (2018) ESCRT-III is required for scissioning new peroxisomes from the endoplasmic reticulum. J Cell Biol 217(6):2087–2102PubMedPubMedCentralCrossRefGoogle Scholar
  103. Matsumoto N et al (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 5(5):454–460PubMedCrossRefGoogle Scholar
  104. Matsuzaki T, Fujiki Y (2008) The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J Cell Biol 183(7):1275–1286PubMedPubMedCentralCrossRefGoogle Scholar
  105. Matsuzono Y et al (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci U S A 96(5):2116–2121PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matsuzono Y et al (2006) Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essential for function and translocation. J Cell Sci 119(Pt 17):3539–3550PubMedCrossRefGoogle Scholar
  107. Mayerhofer PU et al (2016) Human peroxin PEX3 is co-translationally integrated into the ER and exits the ER in budding vesicles. Traffic 17(2):117–130PubMedCrossRefGoogle Scholar
  108. Meinecke M et al (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12(3):273–277PubMedCrossRefGoogle Scholar
  109. Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25(24):10822–10832PubMedPubMedCentralCrossRefGoogle Scholar
  110. Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822(9):1387–1396PubMedCrossRefGoogle Scholar
  111. Mosser J et al (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361(6414):726–730CrossRefGoogle Scholar
  112. Motley AM et al (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 1(1):40–46PubMedPubMedCentralCrossRefGoogle Scholar
  113. Motley AM et al (2008) Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 121(Pt 10):1633–1640PubMedPubMedCentralCrossRefGoogle Scholar
  114. Muntau AC et al (2000) Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am J Hum Genet 67(4):967–975PubMedCrossRefGoogle Scholar
  115. Muntau AC et al (2003) The interaction between human PEX3 and PEX19 characterized by fluorescence resonance energy transfer (FRET) analysis. Eur J Cell Biol 82(7):333–342PubMedCrossRefGoogle Scholar
  116. Nashiro C et al (2011) Recruiting mechanism of the AAA peroxins, Pex1p and Pex6p, to Pex26p on the peroxisomal membrane. Traffic 12(6):774–788PubMedCrossRefGoogle Scholar
  117. Niederhoff K et al (2005) Yeast Pex14p possesses two functionally distinct Pex5p and one Pex7p binding sites. J Biol Chem 280(42):35571–35578PubMedCrossRefGoogle Scholar
  118. Novikoff PM, Novikoff AB (1972) Peroxisomes in absorptive cells of mammalian small intestine. J Cell Biol 53(2):532–560PubMedPubMedCentralCrossRefGoogle Scholar
  119. Oliveira ME et al (2003) The energetics of Pex5p-mediated peroxisomal protein import. J Biol Chem 278(41):39483–39488PubMedCrossRefGoogle Scholar
  120. Otzen M et al (2012) Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p. Traffic 13(7):947–959PubMedCrossRefGoogle Scholar
  121. Passmore JB et al (2017) The respiratory chain inhibitor rotenone affects peroxisomal dynamics via its microtubule-destabilising activity. Histochem Cell Biol 148(3):331–341PubMedPubMedCentralCrossRefGoogle Scholar
  122. Pause B et al (2000) Targeting of the 22 kDa integral peroxisomal membrane protein. FEBS Lett 471(1):23–28PubMedCrossRefGoogle Scholar
  123. Perry RJ et al (2009) Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. Eukaryot Cell 8(6):830–843PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pinto MP et al (2006) The import competence of a peroxisomal membrane protein is determined by Pex19p before the docking step. J Biol Chem 281(45):34492–34502PubMedCrossRefGoogle Scholar
  125. Pires JR et al (2003) The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. J Mol Biol 326(5):1427–1435PubMedCrossRefGoogle Scholar
  126. Platta HW et al (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7(8):817–822PubMedCrossRefGoogle Scholar
  127. Platta HW et al (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177(2):197–204PubMedPubMedCentralCrossRefGoogle Scholar
  128. Platta HW et al (2009) Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29(20):5505–5516PubMedPubMedCentralCrossRefGoogle Scholar
  129. Purdue PE, Lazarow PB (2001) Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem 276(50):47684–47689PubMedCrossRefGoogle Scholar
  130. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450(7170):663–669PubMedCrossRefGoogle Scholar
  131. Rayapuram N, Subramani S (2006) The importomer—a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim Biophys Acta 1763(12):1613–1619PubMedCrossRefGoogle Scholar
  132. Rottensteiner H et al (2004) Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell 15(7):3406–3417PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sacksteder KA et al (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148(5):931–944PubMedPubMedCentralCrossRefGoogle Scholar
  134. Saidowsky J et al (2001) The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J Biol Chem 276(37):34524–34529PubMedCrossRefGoogle Scholar
  135. Sakaue H et al (2016) The N-terminal motif of PMP70 suppresses cotranslational targeting to the endoplasmic reticulum. J Biochem 159(5):539–551PubMedCrossRefGoogle Scholar
  136. Sato Y et al (2008) Characterization of the interaction between recombinant human peroxin Pex3p and Pex19p: identification of TRP-104 in Pex3p as a critical residue for the interaction. J Biol Chem 283(10):6136–6144PubMedCrossRefGoogle Scholar
  137. Sato Y et al (2010) Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J 29(24):4083–4093PubMedPubMedCentralCrossRefGoogle Scholar
  138. Schell-Steven A et al (2005) Identification of a novel, intraperoxisomal Pex14-binding site in Pex13: association of Pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol Cell Biol 25(8):3007–3018PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schliebs W, Kunau WH (2006) PTS2 co-receptors: diverse proteins with common features. Biochim Biophys Acta 1763(12):1605–1612PubMedCrossRefGoogle Scholar
  140. Schliebs W et al (1999) Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J Biol Chem 274(9):5666–5673PubMedCrossRefPubMedCentralGoogle Scholar
  141. Schmidt F et al (2010) Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19. J Biol Chem 285(33):25410–25417PubMedPubMedCentralCrossRefGoogle Scholar
  142. Schmidt F et al (2012) The role of conserved PEX3 regions in PEX19-binding and peroxisome biogenesis. Traffic 13(9):1244–1260PubMedCrossRefGoogle Scholar
  143. Schrul B, Kopito RR (2016) Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat Cell Biol 18(7):740–751PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schueller N et al (2010) The peroxisomal receptor Pex19p forms a helical mPTS recognition domain. EMBO J 29(15):2491–2500PubMedPubMedCentralCrossRefGoogle Scholar
  145. Schuldiner M et al (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134(4):634–645PubMedPubMedCentralCrossRefGoogle Scholar
  146. Schwartzkopff B et al (2015) Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation. Biosci Rep 35(3):e00215PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shani N et al (1997) Identification of a fourth half ABC transporter in the human peroxisomal membrane. Hum Mol Genet 6(11):1925–1931PubMedCrossRefGoogle Scholar
  148. Shibata H et al (2004) Domain architecture and activity of human Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane proteins. J Biol Chem 279(37):38486–38494PubMedCrossRefGoogle Scholar
  149. Stanley WA, Wilmanns M (2006) Dynamic architecture of the peroxisomal import receptor Pex5p. Biochim Biophys Acta 1763(12):1592–1598PubMedCrossRefGoogle Scholar
  150. Stanley WA et al (2006) Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 24(5):653–663PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sugiura A et al (2017) Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542(7640):251–254CrossRefGoogle Scholar
  152. Suzuki Y et al (1987) Biosynthesis of membrane polypeptides of rat liver peroxisomes. J Biochem 101(2):491–496PubMedCrossRefGoogle Scholar
  153. Swinkels BW et al (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10(11):3255–3262PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tabak HF et al (2003) Peroxisomes start their life in the endoplasmic reticulum. Traffic 4(8):512–518PubMedCrossRefPubMedCentralGoogle Scholar
  155. Tam YY et al (2005) Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 280(41):34933–34939PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tani K et al (2011) Dual function of Sec16B: endoplasmic reticulum-derived protein secretion and peroxisome biogenesis in mammalian cells. Cell Logist 1(4):164–167PubMedPubMedCentralCrossRefGoogle Scholar
  157. Thoms S et al (2012) Peroxisome formation requires the endoplasmic reticulum channel protein Sec61. Traffic 13(4):599–609PubMedCrossRefPubMedCentralGoogle Scholar
  158. Titorenko VI, Rachubinski RA (1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18(5):2789–2803PubMedPubMedCentralCrossRefGoogle Scholar
  159. Titorenko VI et al (2002) Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J Cell Biol 156(3):481–494PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ueda K (2011) ABC proteins protect the human body and maintain optimal health. Biosci Biotechnol Biochem 75(3):401–409PubMedCrossRefPubMedCentralGoogle Scholar
  161. van der Zand A et al (2010) Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21(12):2057–2065PubMedPubMedCentralCrossRefGoogle Scholar
  162. van der Zand A et al (2012) Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149(2):397–409PubMedCrossRefPubMedCentralGoogle Scholar
  163. van Roermund CW et al (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22(12):4201–4208PubMedCrossRefPubMedCentralGoogle Scholar
  164. van Roermund CW et al (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim Biophys Acta 1811(3):148–152Google Scholar
  165. van Roermund CW et al (2014) A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta 1841(4):563–568PubMedCrossRefPubMedCentralGoogle Scholar
  166. Vasiliou V et al (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290PubMedPubMedCentralCrossRefGoogle Scholar
  167. Veenhuis M, van der Klei IJ (2014) A critical reflection on the principles of peroxisome formation in yeast. Front Physiol 5:110PubMedPubMedCentralCrossRefGoogle Scholar
  168. Walker CL et al (2018) Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol Rev 98(1):89–115PubMedCrossRefGoogle Scholar
  169. Wang X et al (2001) Discrete targeting signals direct Pmp47 to oleate-induced peroxisomes in Saccharomyces cerevisiae. J Biol Chem 276(14):10897–10905PubMedCrossRefPubMedCentralGoogle Scholar
  170. Wang D et al (2003) Physical interactions of the peroxisomal targeting signal 1 receptor pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 278(44):43340–43345PubMedCrossRefGoogle Scholar
  171. Waterham HR et al (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863(5):922–933PubMedCrossRefGoogle Scholar
  172. Wiemer EA et al (1996) Isolation and characterization of Pas2p, a peroxisomal membrane protein essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J Biol Chem 271(31):18973–18980PubMedCrossRefGoogle Scholar
  173. Williams C, Distel B (2006) Pex13p: docking or cargo handling protein? Biochim Biophys Acta 1763(12):1585–1591PubMedCrossRefGoogle Scholar
  174. Williams C et al (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282(31):22534–22543PubMedCrossRefGoogle Scholar
  175. Williams C et al (2012) Insights into ubiquitin-conjugating enzyme/co-activator interactions from the structure of the Pex4p:Pex22p complex. EMBO J 31(2):391–402Google Scholar
  176. Williams C et al (2015) The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission. Proc Natl Acad Sci U S A 112(20):6377–6382PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yagita Y et al (2013) Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. J Cell Biol 200(5):651–666PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yang X et al (2001) Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur J Cell Biol 80(2):126–138PubMedCrossRefGoogle Scholar
  179. Yonekawa S et al (2011) Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc Natl Acad Sci U S A 108(31):12746–12751PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  2. 2.Faculty of Pharmaceutical SciencesHiroshima International UniversityKureJapan
  3. 3.University of ToyamaToyamaJapan

Personalised recommendations