Advertisement

The Timescale of Thermal Comfort Adaptation in Heated and Unheated Buildings

  • Maohui LuoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapter, we investigated the mutual relationships between occupants’ indoor thermal experience and comfort expectation through an online survey. The results showed an asymmetrical phenomenon and the ‘demand factor’ was proposed to describe it. However, due to it was an online survey, there may exist uncertainties. This chapter will future clarify the dynamics of thermal comfort adaptation especially its timescales.

References

  1. 1.
    Deuble MP, de Dear RJ (2012) Mixed-mode buildings: a double standard in occupants’ comfort expectation. Build Environ 54:53–60CrossRefGoogle Scholar
  2. 2.
    Luo M, Cao B, Damiens J, Lin B, Ouyang Q et al (2015) Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Build Environ 88:46–54CrossRefGoogle Scholar
  3. 3.
    Rupp R, de Dear R, Ghisi E (2018) Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework. Energy Build 158:1475–1486CrossRefGoogle Scholar
  4. 4.
    Candido C, de Dear R, Lamberts R, Bittencourt L (2010) Cooling exposure in hot humid climates: are occupants ‘addicted’? Archit Sci Rev 53(1):59–64CrossRefGoogle Scholar
  5. 5.
    Ghahramani A, Zhang K, Dutta K et al (2016) Energy savings from temperature setpoints and dead band: quantifying the influence of building and system properties on savings. Appl Energy 165:930–942CrossRefGoogle Scholar
  6. 6.
    de Dear R (1998) Global database of thermal comfort field experiments. ASHRAE Trans 104:1141–1152Google Scholar
  7. 7.
    de Dear R, Brager G (2001) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45:100–108CrossRefGoogle Scholar
  8. 8.
    Carlucci S, Bai L, de Dear R, Yang L (2018) Review of adaptive thermal comfort models in built environmental regulatory documents. Build Environ 137:73–89Google Scholar
  9. 9.
    Zaki S, Damiati S, Rijal H, Hagishima A, Razak A (2017) Adaptive thermal comfort in university classrooms in Malaysia and Japan. Build Environ 122:294–306CrossRefGoogle Scholar
  10. 10.
    Ning H, Wang Z, Zhang X, Ji Y (2016) Adaptive thermal comfort in university dormitories in the severe cold area of China. Build Environ 99:161–169CrossRefGoogle Scholar
  11. 11.
    Yu J, Ouyang Q, Zhu Y et al (2012) A comparison of the thermal adaptability of people accustomed to air conditioned environments and naturally ventilated environments. Indoor Air 22:110–118CrossRefGoogle Scholar
  12. 12.
    van der Lans A, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases no-shivering thermogenesis. J Clin Investig 123(8):3395–3403CrossRefGoogle Scholar
  13. 13.
    Candido C, de Dear R, Ohba M (2012) Effects of artificially induced heat acclimatization on subjects’ thermal and air movement preferences. Build Environ 49:251–258CrossRefGoogle Scholar
  14. 14.
    Liu Y, Yu D, Cong S et al (2017) A tracked field study of thermal adaptation during a short-term migration between cold and hot-summer and warm-winter areas of China. Build Environ 124:90–103Google Scholar
  15. 15.
    Nicol J, Humphreys M (2002) Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build 34(6):563–572CrossRefGoogle Scholar
  16. 16.
    Humphreys MA (1976) Field studies of thermal comfort compared and applied. J Inst Heat Ventilating Eng 44(1):5–27Google Scholar
  17. 17.
    ISO EN ISO 8996 (2004) Ergonomics of the thermal environment—determination of metabolic rate. International organization for Standardization, GenevaGoogle Scholar
  18. 18.
    Foldvary V, Cheung T, Zhang H et al (2018) Development of the ASHRAE global thermal comfort database II. Build Environ 142:502–512CrossRefGoogle Scholar
  19. 19.
    van Marken Lichtenbelt W, Vanhommerig J, Smelders N et al (2009) Cold activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508Google Scholar
  20. 20.
    Luo M, Ji W, Cao B et al (2016) Indoor climate and thermal physiological adaptations: evidences from migrants with different cold indoor exposures. Build Environ 98:30–38CrossRefGoogle Scholar
  21. 21.
    Wijayanto T, Toramoto S, Wakabayashi H, Tochihara Y (2012) Effects of duration of stay in temperate area on thermoregulatory responses to passive heat exposure in tropical south-east Asian males residing in Japan. J Physiol Anthropol 31(1):1–10CrossRefGoogle Scholar
  22. 22.
    Cao B, Zhu Y, Ouyang Q, Zhou X, Huang L (2011) Field study on human thermal comfort and thermal adaptability during the summer and winter in Beijing. Energy Build 43(5):1051–1056CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Nature Singapore Pte Ltd.  2020

Authors and Affiliations

  1. 1.Tongji UniversityShanghaiChina

Personalised recommendations