Intelligent Control of Thermal State Parameters in Sintering Process

  • Min WuEmail author
  • Weihua Cao
  • Xin Chen
  • Jinhua She
Part of the Engineering Applications of Computational Methods book series (EACM, volume 3)


A sintering process produces sinters as blast furnace materials. The stability of a sintering process and the quality of sinter are closely related to the cost, efficiency, and energy consumption of blast furnace production. And parameters of a thermal state in the process directly affect the stability of the process and the quality of sinter.


  1. 1.
    Kwon WH, Kim YH, Lee SJ, Paek KN (1999) Event-based modeling and control for the Burnthrough Point in sintering processes. IEEE Trans Control Syst Technol 7(1):31–41CrossRefGoogle Scholar
  2. 2.
    Terpark J, Dorcak L, Kostial I, Pivka L (2005) Control of burn-through point for agglomeration belt. Metalurgija 44(4):281–284Google Scholar
  3. 3.
    Giri BK, Roy GG (2012) Mathematical modelling of iron ore sintering process using genetic algorithm. Ironmak Steelmak 39(1):59–66CrossRefGoogle Scholar
  4. 4.
    Yang W, Choi S, Choi ES, Ri DW, Kim S (2006) Combustion characteristics in an iron ore sintering bed-evaluation of fuel substitution. Combust Flame 145(3):447–463CrossRefGoogle Scholar
  5. 5.
    Chen X, Hu J, Wu M, Cao WH (2017) T-S fuzzy logic based modeling and robust control for Burning-Through Point in sintering process. IEEE Trans Ind Electron 64(12):9378–9388CrossRefGoogle Scholar
  6. 6.
    Gao XQ, Shang C, Huang DX, Yang F (2017) A novel approach to monitoring and maintenance of industrial PID controllers. Control Eng Pract 64:111–126CrossRefGoogle Scholar
  7. 7.
    Zhang F, Wu X, Shen J (2017) Extended state observer based fuzzy model predictive control for ultra-supercritical boiler-turbine unit. Appl Therm Eng 118:90–100CrossRefGoogle Scholar
  8. 8.
    Mai A, Commuri S (2016) Intelligent control of a prosthetic ankle joint using gait recognition. Control Eng Pract 49:1–13CrossRefGoogle Scholar
  9. 9.
    Li C, Zhang N, Lai X, Zhou J, Xu Y (2017) Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation. Inf Sci 396:162–181CrossRefGoogle Scholar
  10. 10.
    Kumar A, Kumar V (2017) Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator. Expert Syst Appl 73:161–177CrossRefGoogle Scholar
  11. 11.
    Yu DL, Chang TK, Yu DW (2005) Fault-tolerant control of multivariable processes using auto-tuning PID controller. IEEE Trans Syst Man Cybern 35(1):32–43MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pereira RDO, Veronesi M, Visioli A, Normey-Rico JE, Torrico BC (2017) Implementation and test of a new autotuning method for PID controllers of TITO processes. Control Eng Pract 58:171–185CrossRefGoogle Scholar
  13. 13.
    Wang CS, Wu M (2011) Closed-loop identification method of sintering process with part of the inputs controlled. Procedia Eng 15:1910–1915CrossRefGoogle Scholar
  14. 14.
    Wu M, Duan P, Cao WH, She JH, Xiang J (2012) An intelligent control system based on prediction of the burn-through point for the sintering process of an iron and steel plant. Expert Syst Appl 39(5):5971–5981CrossRefGoogle Scholar
  15. 15.
    Wu M, Xu CH, She JH, Cao WH (2012) Neural-network-based integrated model for predicting burn-through point in lead Czinc sintering process. J Process Control 22(5):925–934CrossRefGoogle Scholar
  16. 16.
    Wang CS, Wu M (2013) Hierarchical intelligent control system and its application to the sintering process. IEEE Trans Ind Inform 9(1):190–197MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wu M, Wang CS, Cao WH, Lai XZ, Chen X (2012) Design and application of generalized predictive control strategy with closed-loop identification for burn-through point in sintering process. Control Eng Pract 20(10):1065–1074CrossRefGoogle Scholar
  18. 18.
    Rodrigues EMG, Godina R, Pouresmaeil E, Ferreira JR, Catalão JPS, (2017) Domestic appliances energy optimization with model predictive control. Energy Convers Manag 42:402–413CrossRefGoogle Scholar
  19. 19.
    Bouhoune K, Yazid K, Boucherit MS, Chériti A, (2017) Hybrid control of the three phase induction machine using artificial neural networks and fuzzy logic. Appl Soft Comput 55:289–301CrossRefGoogle Scholar
  20. 20.
    Precup RE, Preitl S, Tar JK, Tomescu ML, Takacs M, Korondi P, Baranyi P (2008) Fuzzy control system performance enhancement by iterative learning control. IEEE Transactions on Industrial Electronics 55(9):3461–3475CrossRefGoogle Scholar
  21. 21.
    Yang DD, Cai KY (2010) Finite-time quantized guaranteed cost fuzzy control for continuous-time nonlinear systems. Expert Syst Appl 37(10):6963–6967CrossRefGoogle Scholar
  22. 22.
    Soyguder S, Alli H (2010) Fuzzy adaptive control for the actuators position control and modeling of an expert system. Expert Syst Appl 37(3):2072–2080CrossRefGoogle Scholar
  23. 23.
    Wu M, Xu CH, Du YX (2006) Intelligent optimal control for lead-zinc sintering process state. Trans Nonferrous Metals Soc China 16(4):975–981CrossRefGoogle Scholar
  24. 24.
    Chen XL, Fan XH, Wang Y, Long HM, Jiang T, Shi J, Song QY, Yang XD (2009) Control guidance system for sintering burn through point. Ironmak Steelmak 36(3):209–211CrossRefGoogle Scholar
  25. 25.
    Hu J, Wu M, Chen X, She JH, Cao WH, Chen LF, Ding HF (2017) Hybrid prediction model of carbon efficiency for sintering process. IFAC-PapersOnLine 50(1):10238–10243CrossRefGoogle Scholar
  26. 26.
    Hill DJ, Minsker BS (2010) Anomaly detection in streaming environmental sensor data: A data-driven modeling approach. Environ Model Softw 25(9):1014–1022CrossRefGoogle Scholar
  27. 27.
    Chen ZX, Fang HJ, Chang Y (2016) Weighted data-driven fault detection and isolation: a subspace-based approach and algorithms. IEEE Trans Ind Electron 63(5):3290–3298CrossRefGoogle Scholar
  28. 28.
    Verhaegen M, Hansson A (2016) N2sid: Nuclear norm subspace identification of innovation models. Automatica 72:57–63MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hu YS, Dai Y, Liang Q, Wang Y (2015) Subspace-based continuous-time model identification using nuclear norm minimization. IFAC PapersOnline 48(28):338–343CrossRefGoogle Scholar
  30. 30.
    Golub GH, Reinsch C (1970) Singular value decomposition and least squares solution. Numer Math 14:403–420MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kim D, Cai J, Braun JE, Ariyura KB (2018) System identification for building thermal systems under the presence of unmeasured disturbances in closed loop operation: Theoretical analysis and application. Energy Build 167:359–369CrossRefGoogle Scholar
  32. 32.
    Liu X, Cui J (2018) Economic model predictive control of boiler-turbine system. J Process Control 66:59–67zbMATHCrossRefGoogle Scholar
  33. 33.
    Ding ZT (2015) Consensus disturbance rejection with disturbance observers. IEEE Trans Ind Electron 62(9):5829–5837CrossRefGoogle Scholar
  34. 34.
    Sariyildiz E, Ohnishi K (2014) A guide to design disturbance observer. J Dyn Syst Meas Control 136(2):729–736CrossRefGoogle Scholar
  35. 35.
    Wang L, Su JB (2015) Robust optimal disturbance observer design for the non-minimum phase system. Asian J Control 17(4):1453–1457MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Chu Z, Sun Y, Wu C, Sepehri N (2018) Active disturbance rejection control applied to automated steering for lane keeping in autonomous vehicles. Control Eng Pract 74:13–21CrossRefGoogle Scholar
  37. 37.
    Huang Y, Xue WC (2014) Active disturbance rejection control: methodology and theoretical analysis. ISA Trans 53(4):963–976MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sun L, Li DH, Hu KT, Lee KY, Pan FP (2016) On tuning and practical implementation of active disturbance rejection controller: a case study from A regenerative heater in a 1000 MW power plant. Ind Eng Chem Res 55(23):6686–6695CrossRefGoogle Scholar
  39. 39.
    Chen X, Jiao W, Wu M, Cao WH (2018) EID-estimation-based periodic disturbance rejection for sintering ignition process with input time delay. Asian J Control 20(5):1–14MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    She JH, Zhang AC, Lai XZ, Wu M (2012) Global stabilization of 2-DOF underactuated mechanical systems C an equivalent-input-disturbance napproach. Nonlinear Dyn 69(1–2):495–509CrossRefGoogle Scholar
  41. 41.
    Yu P, Wu M, She JH, Lei Q (2016) Robust repetitive control and disturbance rejection based on two-dimensional model and equivalent-input-disturbance approach. Asian J Control 18(6):2325–2335MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wu M, Xu CH (2007) An intelligent integrated predictive method based on gas temperature profile for burn-through point. Acta Autom Sin 33(12):1313–1320 (In Chinese)Google Scholar
  43. 43.
    Wu M, Cao WH, He CY, She JH (2009) Integrated intelligent control of gas mixing-and-pressurization process. IEEE Trans Control Syst Technol 17(1):68–77CrossRefGoogle Scholar
  44. 44.
    Wang YJ, Zhang CB, Chen ZH (2015) A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy. Energy Procedia 137:427–434Google Scholar
  45. 45.
    Battistelli G, Mosca E, Tesi P (2014) Adaptive memory in multi-model switching control of uncertain plants. Automatica 50(3):874–882MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Li SY, Hu CF (2007) Two-step interactive satisfactory method for fuzzy multiple objective optimization with preemptive priorities. IEEE Trans Fuzzy Syst 15(3):417–425CrossRefGoogle Scholar
  47. 47.
    Khan R, Khan SU (2017) Energy saving through intelligent coordination among daily used fixed and mobile devices. Sustain Comput Inform Syst 14:43–57Google Scholar
  48. 48.
    Bergamascoa M, Lovera M (2011) Continuous-time predictor-based subspace identification using laguerre filters. IET Control Theory Appl 5(7):856–867MathSciNetCrossRefGoogle Scholar
  49. 49.
    Johansson R (2010) Continuous-time model identification and state estimation using non-uniformly sampled data. In: Proceedings of the 19th international symposium on mathematical theory of networks and systems, 2010, pp 347-354Google Scholar
  50. 50.
    She J, Xin X, Yamaura T (2006) Analysis and design of control system with equivalent-input-disturbance estimation. In: Proceedings of IEEE international conference on control applications, pp 1463–1469Google Scholar
  51. 51.
    Wu M, Xu BG, Cao WH (2014) Aperiodic disturbance rejection in repetitive-control systems. IEEE Trans Control Syst Technol 22(3):1044–1051CrossRefGoogle Scholar
  52. 52.
    Sun L, Li DH, Lee KY (2015) Enhanced decentralized PI control for fluidized bed combustor via advanced disturbance observer. Control Eng Pract 42:128–139CrossRefGoogle Scholar
  53. 53.
    Li MH, Wang J (2006) The research for soft measuring technique of sintering burning through point. In: IEEE conference on industrial electronics and applications, pp 1–4Google Scholar
  54. 54.
    Yao TX, Liu SF, Xie NM (2009) On the properties of small sample of GM(1,1) model. Appl Math Model 33(4):1894–1903MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Zhang G, Wang ZQ, Han XL, Hu SS. Research on satisfactory control theory and its application in fault-tolerant technology. in: The 5th world congress on intelligent control and automation, 2004, pp 1521-1524Google Scholar

Copyright information

© Science Press 2020

Authors and Affiliations

  1. 1.China University of GeosciencesWuhanChina
  2. 2.Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex SystemsWuhanChina
  3. 3.School of EngineeringTokyo University of TechnologyTokyoJapan

Personalised recommendations