Fibre Reinforced Polymer (FRP) Nanocomposites for Radar Absorption Application in the X-Band

  • Puppala Siva NagasreeEmail author
  • Koona Ramji
  • Killi Krushna Murthy
  • Mantri Kannam Naidu
  • Tammareddy Haritha
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Microwave radar absorbing properties are effectively achieved due to the unique structure and electrical properties of nanostructured materials. The main objective of the present work is to show that by utilizing lower weight fractions of MWCNTs an efficient and thin microwave absorber with load bearing capacity can be developed. Fibre reinforced polymer (FRP) nanocomposites for radar absorbing applications in the X-band (8.2–12.4 GHz) were prepared using MWCNTs as dielectric lossy material. The complex permittivity values obtained from Vector Network Analyzer were used to evaluate the reflection loss of double-layered structures using transmission line theory. A reflection loss of less than −10 dB for entire band was obtained for RAS 8 with a total thickness of 3 mm. At central frequencies of 10.6 GHz and 11.0 GHz RAS 6, RAS 3 shown −32 dB and −35 dB, respectively, corresponding to 99% absorption of incident electromagnetic radiation. The proposed double-layered RAS are lightweight promising structures for radar absorption application.


Fibre reinforced polymer Radar absorbing structure MWCNTs Dielectric material Input impedance Vector network analyzer 


  1. 1.
    Park K-Y, Lee S-E, Kim C-G, Han J-H (2006) Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol 66:576–584CrossRefGoogle Scholar
  2. 2.
    Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 132:85–89CrossRefGoogle Scholar
  3. 3.
    Kim J-B, Lee S-K, Kim C-G (2008) Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Compos Sci Technol 68:2909–2916CrossRefGoogle Scholar
  4. 4.
    Chin WS, Lee DG (2007) Development of the composite RAS (radar absorbing structure) for the X-band frequency range. Compos Struct 77:457–465CrossRefGoogle Scholar
  5. 5.
    Teber A, Cil K, Yilmaz T, Eraslan B, Uysal D, Surucu G (2017) Manganese and zinc spinel ferrites blended with multi-walled carbon nanotubes as microwave absorbing materials. Aerospace 4(2):4010002CrossRefGoogle Scholar
  6. 6.
    Oh J-H, Oh K-S, Kim C-S, Hong C-H (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos B 35:49–56CrossRefGoogle Scholar
  7. 7.
    Micheli D, Marchetti M (2012) Mitigation of human exposure to electromagnetic fields using carbon foam and carbon nanotubes. Engineering 4:928–943CrossRefGoogle Scholar
  8. 8.
    Micheli D, Pastore R, Apollo C, Marchetti M, Gradoni G (2012) Optimization of multilayer shields made of composite nanostructured materials. IEEE Trans Electromagn Compat 54(1)CrossRefGoogle Scholar
  9. 9.
    Lee S-E, Kang J-H, Kim C-G (2006) Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos Struct 76:397–405CrossRefGoogle Scholar
  10. 10.
    Lv X, Yang S, Jin J, Zhang L, Li G, Jiang J (2009) Microwave absorbing characteristics of epoxy composites containing carbon black and carbon fibers. Polym (Korea) 33(5):420–428Google Scholar
  11. 11.
    Choi I, Kim JG, Seo GS, Lee DG (2012) Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite. Compos Struct 94:3002–3008CrossRefGoogle Scholar
  12. 12.
    Kim PC, Lee DG (2009) Composite sandwich constructions for absorbing the electromagnetic waves. Compos Struct 87:161–167CrossRefGoogle Scholar
  13. 13.
    Folgueras LC, Alves MA, Rezende MC (2010) Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline. Mater Res 13(2):197–201CrossRefGoogle Scholar
  14. 14.
    Micheli D, Apollo C, Pastore R, Marchetti M (2010) X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70:400–409CrossRefGoogle Scholar
  15. 15.
    Micheli D, Pastore R, Apollo C, Marchetti M, Gradoni G (2011) Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Trans Microw Theory Tech 59(10)CrossRefGoogle Scholar
  16. 16.
    Jin-Bong Kim (2012) Broadband radar absorbing structures of carbon nanocomposites. Adv Compos Mater 21(4):333–344Google Scholar
  17. 17.
    Giorcelli M, Savi P, Miscuglio M, Yahya MH, Tagliaferro A (2014) Analysis of MWCNT/epoxy composites at microwave frequency: reproducibility investigation. Nanoscale Res Lett 9:168Google Scholar
  18. 18.
    Nwigboji IH, Ejembi JI, Wang Z, Bagayoko D, Zhao G-L (2015) Microwave absorption properties of multi-walled carbon nanotube (outer diameter 20–30 nm)—epoxy composites from 1 to 26.5 GHz. Diam Relat Mater 52:66–71CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Puppala Siva Nagasree
    • 1
    Email author
  • Koona Ramji
    • 2
  • Killi Krushna Murthy
    • 3
  • Mantri Kannam Naidu
    • 4
  • Tammareddy Haritha
    • 5
  1. 1.Department of Mechanical EngineeringD.M.S.S.V.H. College of EnggMachilipatnamIndia
  2. 2.Dr.B.R.Ambedkar UniversitySrikakulamIndia
  3. 3.Department of ChemistryIndian Institute of TechnologyHyderabadIndia
  4. 4.Department of Mechanical EngineeringM.V.G.R. College of EnggVizianagaramIndia
  5. 5.Department of Mechanical EngineeringN.R.I. Institute of TechnologyPothavarappaduIndia

Personalised recommendations