Advertisement

Unravelling the Genomic Targets of Small Molecules and Application of CRISPR-Cas 9 System for Genomic Editing in Cancer with Respective Clinical Applications

  • Muhammad Usama TariqEmail author
Chapter
  • 26 Downloads

Abstract

Cancer occurs as a result of deregulation of body’s integral pathways involved in growth, proliferation, differentiation, and defense. The disease kills millions of people worldwide every year and is multifaceted in nature. Several efforts have been made to find a cure against cancer; however, owing to its nature, a single treatment has not been developed yet. Consequently, scientists are investing in developing multiple cures against different types of cancers to decrease the death toll. Such efforts widened the pool of available therapeutic options such as chemotherapy, surgery, radiation therapy, targeted therapy, nucleic acid-based therapy, etc. In this chapter, the diverse forms of treatment options from conventional to the most updated ones are described in detail with their advantages and limitations. Moreover, the chapter also talks about CRISPR-based cancer therapeutics and its application in the clinic.

Keywords

Genomic targets CRISPR-Cas 9 Genome editing Therapy 

References

  1. 1.
    Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sabel MS, Diehl KM, Chang AE (2006) Principles of surgical therapy in oncology. In: Chang AE, Hayes DF, Pass HI et al (eds) Oncology: an evidence-based approach. Springer, New York, pp 58–72.  https://doi.org/10.1007/0-387-31056-8_4CrossRefGoogle Scholar
  3. 3.
    Kinsella T, Sohn J, Wessels B (2006) In: Chang AE et al (eds) Oncology. Springer, New York, pp 41–57.  https://doi.org/10.1007/0-387-31056-8_3CrossRefGoogle Scholar
  4. 4.
    Lundqvist EÅ, Fujiwara K, Seoud M (2015) Principles of chemotherapy. Int J Gynecol Obstet 131(S2):S146–S149.  https://doi.org/10.1016/j.ijgo.2015.06.011CrossRefGoogle Scholar
  5. 5.
    Padma VV (2015) An overview of targeted cancer therapy. Biomedicine (Taipei) 5(4):19.  https://doi.org/10.7603/s40681-015-0019-4CrossRefGoogle Scholar
  6. 6.
    Yan L, Rosen N, Arteaga C (2011) Targeted cancer therapies. Chin J Cancer 30(1):1–4.  https://doi.org/10.5732/cjc.010.10553CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhou J, Chng W-J (2018) Resistance to FLT3 inhibitors in acute myeloid leukemia: molecular mechanisms and resensitizing strategies. World J Clin Oncol 9(5):90–97.  https://doi.org/10.5306/wjco.v9.i5.90CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95.  https://doi.org/10.1038/nrc2981CrossRefPubMedGoogle Scholar
  9. 9.
    Wrodnigg TM, Steiner AJ, Ueberbacher BJ (2008) Natural and synthetic iminosugars as carbohydrate processing enzyme inhibitors for cancer therapy. Anti Cancer Agents Med Chem 8(1):77–85CrossRefGoogle Scholar
  10. 10.
    Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: progress challenges and future directions. Mol Cancer 17(1):48.  https://doi.org/10.1186/s12943-018-0804-2CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chan BA, Hughes BGM (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4(1):36–54.  https://doi.org/10.3978/j.issn.2218-6751.2014.05.01CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Köcher T, Mechtler K, Bennett KL, Superti-Furga G (2009) Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci 106(18):7414.  https://doi.org/10.1073/pnas.0900653106CrossRefPubMedGoogle Scholar
  13. 13.
    Durrant DE, Morrison DK (2018) Targeting the Raf kinases in human cancer: the Raf dimer dilemma. Br J Cancer 118(1):3–8.  https://doi.org/10.1038/bjc.2017.399CrossRefPubMedGoogle Scholar
  14. 14.
    Parmar S, Patel K, Pinilla-Ibarz J (2014) Ibrutinib (imbruvica): a novel targeted therapy for chronic lymphocytic leukemia. Pharm Ther 39(7):483–519Google Scholar
  15. 15.
    Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, Arpino G, De Laurentiis M, Puglisi F, De Placido S, Del Mastro L (2018) CDK 4/6 inhibitors as single agent in advanced solid tumors. Front Oncol 8:608–608.  https://doi.org/10.3389/fonc.2018.00608CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W (2018) Function of the c-met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 17(1):45–45.  https://doi.org/10.1186/s12943-018-0796-yCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mooso BA, Vinall RL, Mudryj M, Yap SA, deVere White RW, Ghosh PM (2015) The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence. J Urol 193(1):19–29.  https://doi.org/10.1016/j.juro.2014.07.121CrossRefPubMedGoogle Scholar
  18. 18.
    Hsu L, Armstrong AW (2014) JAK inhibitors: treatment efficacy and safety profile in patients with psoriasis. J Immunol Res 2014:283617.  https://doi.org/10.1155/2014/283617CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Banks M, Crowell K, Proctor A, Jensen BC (2017) Cardiovascular effects of the MEK inhibitor, Trametinib: a case report, literature review and consideration of mechanism. Cardiovasc Toxicol 17(4):487–493.  https://doi.org/10.1007/s12012-017-9425-zCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mansoori B, Sandoghchian Shotorbani S, Baradaran B (2014) RNA interference and its role in cancer therapy. Adv Pharm Bull 4(4):313–321.  https://doi.org/10.5681/apb.2014.046CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vozniak JM, Jacobs JM (2012) Vandetanib. J Adv Pract Oncol 3(2):112–116PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang S, Yu D (2012) Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 33(3):122–128.  https://doi.org/10.1016/j.tips.2011.11.002CrossRefPubMedGoogle Scholar
  23. 23.
    McKeown MR, Bradner JE (2014) Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 4(10):a014266.  https://doi.org/10.1101/cshperspect.a014266CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rodriguez R, Miller KM (2014) Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat Rev Genet 15:783.  https://doi.org/10.1038/nrg3796CrossRefPubMedGoogle Scholar
  25. 25.
    Giancotti FG (2014) Deregulation of cell signaling in cancer. FEBS Lett 588(16):2558–2570.  https://doi.org/10.1016/j.febslet.2014.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ (1997) Targeting gene therapy to cancer: a review. Oncol Res 9(6–7):313–325PubMedGoogle Scholar
  27. 27.
    Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A 111(31):11449–11454.  https://doi.org/10.1073/pnas.1411393111CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Röder N, Löffler K, Lange C, Fechtner M, Möpert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3 inhibits cancer progression. Cancer Res 68(23):9788.  https://doi.org/10.1158/0008-5472.CAN-08-2428CrossRefPubMedGoogle Scholar
  29. 29.
    Bianchini D, Omlin A, Pezaro C, Lorente D, Ferraldeschi R, Mukherji D, Crespo M, Figueiredo I, Miranda S, Riisnaes R, Zivi A, Buchbinder A, Rathkopf DE, Attard G, Scher HI, de Bono J, Danila DC (2013) First-in-human phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide to exon 4 of the androgen receptor mRNA in patients with castration-resistant prostate cancer. Br J Cancer 109(10):2579–2586.  https://doi.org/10.1038/bjc.2013.619CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Senzer N, Barve M, Kuhn J, Melnyk A, Beitsch P, Lazar M, Lifshitz S, Magee M, Oh J, Mill SW, Bedell C, Higgs C, Kumar P, Yu Y, Norvell F, Phalon C, Taquet N, Rao DD, Wang Z, Jay CM, Pappen BO, Wallraven G, Brunicardi FC, Shanahan DM, Maples PB, Nemunaitis J (2012) Phase I trial of "bi-shRNAi(furin)/GMCSF DNA/autologous tumor cell" vaccine (FANG) in advanced cancer. Mol Ther 20(3):679–686.  https://doi.org/10.1038/mt.2011.269CrossRefPubMedGoogle Scholar
  31. 31.
    Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y (2014) Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 3(8):e182–e182.  https://doi.org/10.1038/mtna.2014.32CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ziach K, Chollet C, Parissi V, Prabhakaran P, Marchivie M, Corvaglia V, Bose PP, Laxmi-Reddy K, Godde F, Schmitter J-M, Chaignepain S, Pourquier P, Huc I (2018) Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA. Nat Chem 10(5):511–518.  https://doi.org/10.1038/s41557-018-0018-7CrossRefPubMedGoogle Scholar
  33. 33.
    Lundstrom K (2018) Viral vectors in gene therapy. Diseases 6(2):42.  https://doi.org/10.3390/diseases6020042CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Harrison EB, Azam SH, Pecot CV (2018) Targeting accessories to the crime: nanoparticle nucleic acid delivery to the tumor microenvironment. Front Pharmacol 9:307–307.  https://doi.org/10.3389/fphar.2018.00307CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Karve S, Werner ME, Sukumar R, Cummings ND, Copp JA, Wang EC, Li C, Sethi M, Chen RC, Pacold ME, Wang AZ (2012) Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc Natl Acad Sci 109(21):8230.  https://doi.org/10.1073/pnas.1120508109CrossRefPubMedGoogle Scholar
  36. 36.
    Anders L, Guenther MG, Qi J, Fan ZP, Marineau JJ, Rahl PB, Lovén J, Sigova AA, Smith WB, Lee TI, Bradner JE, Young RA (2014) Genome-wide localization of small molecules. Nat Biotechnol 32(1):92–96.  https://doi.org/10.1038/nbt.2776CrossRefPubMedGoogle Scholar
  37. 37.
    Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S (2018) CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicine 6(4):E105.  https://doi.org/10.3390/biomedicines6040105CrossRefGoogle Scholar
  38. 38.
    Yin H, Xue W, Anderson DG (2019) CRISPR–Cas: a tool for cancer research and therapeutics. Nat Rev Clin Oncol 16(5):281–295.  https://doi.org/10.1038/s41571-019-0166-8CrossRefPubMedGoogle Scholar
  39. 39.
    Isakov N (2017) Future perspectives for cancer therapy using the CRISPR genome editing. Technology 08.  https://doi.org/10.4172/2155-9899.1000e120
  40. 40.
    Tian X, Gu T, Patel S, Bode AM, Lee M-H, Dong Z (2019) CRISPR/Cas9 – an evolving biological tool kit for cancer biology and oncology. Npj precision. Oncology 3(1):8.  https://doi.org/10.1038/s41698-019-0080-7CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.College of Health and Life SciencesHamad Bin Khalifa University, Education city (Qatar foundation)DohaQatar

Personalised recommendations