Zero Loss 90° Waveguide: A Futuristic Photonic Components to Unravel Bending Loss Issues

  • P. K. Dalai
  • G. PalaiEmail author
  • P. Sarkar
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 37)


A proposal related to zero loss waveguide is evinced in the present communication, which deals with two dimensional photonic crystal structure having 90° bend channels to unravel bending loss issues owing to no altering of a signal between input and output. The said approach is also extended to exhibit an exhilarated result pertaining to short and long channels, where channel is manipulated with signal of wavelength, 619 nm. Furthermore, the entire work is executed by deploying FDTD technique to realize above mentioned proposal, which could be an apt candidate to riddle out bending loss issues which encounter a serious problem in the communication system.


Bending loss 90° waveguide Future component Finite difference time domain method 


  1. 1.
    A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc.,) ISBN. 1-58053-076-1Google Scholar
  2. 2.
    G.T. Reed, Silicon Photonics: An Introduction (Wiley Publisher). ISBN-10: 0470870346Google Scholar
  3. 3.
    K.P. Swain, G. Palai, Estimation of human-hemoglobin using honeycomb structure: an application of photonic crystal. Optik Int. J. Light Electron Opt. 127(6), 3333–3336 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Palai, Measurement of impurity concentration in chalcogenide glasses using optical principle. Optik Int. J. Light Electron Opt. 125(19), 5794–5799 (2014)CrossRefGoogle Scholar
  5. 5.
    C.S. Mishra, G. Palai, Optical nonlinearity in germanium and silicon semiconductor vis-a-vis temperature and wavelengths for sensing application. Optik Int. J. Light Electron Opt. 137, 37–44 (2017)CrossRefGoogle Scholar
  6. 6.
    J.S.N. Achary, G. Palai, S.K. Tripathy, Realization of an optical demultiplexer using the combination of filter and finite difference time domain approach. Optik Int. J. Light Electron Opt. 150, 94–98 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Palai, Optimization of optical waveguide for optical DEMUX at optical windows. Optik Int. J. Light Electron Opt. 127(5), 2590–2593 (2016)CrossRefGoogle Scholar
  8. 8.
    G. Palai, S.K. Beura, N. Gupta, R. Sinha, Optical MUX/DEMUX using 3D photonic crystal structure: a future application of silicon photonics. Optik Int. J. Light Electron Opt. 128, 224–227 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Palai, N. Mudului, S. Sahoo, S. Tripathy, Realization of potassium chloride sensor using photonic crystal fiber. Soft Nanosci. Lett. 3(4A), 16–19 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Palai, B. Nayak, S.R. Rout, Realisation of optical demux vis-a-vis 850/1310/1550 nm using photonic crystal fiber. Optik Int. J. Light Electron Opt. 159, 344–347 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Palai, B. Nayak, S.K. Sahoo, S.R. Nayak, S.K. Tripathy, Metamaterial based photonic crystal fiber memory for optical computer. Optik Int. J. Light Electron Opt. 171, 393–396 (2018)CrossRefGoogle Scholar
  12. 12.
    S.K. Mohanty, G. Palai, U. Bhanja, C.S. Mishra, A new-fangled high dimensional waveguide for multiple sensing applications using finite difference time domain method. Optik Int. J. Light Electron Opt 172, 861–865 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Aydin, A single-field finite-difference time-domain formulations for electromagnetic simulations, Electrical Engineering and Computer Science - Dissertations, 2011Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringGITABhubaneswarIndia
  2. 2.Biju Patnaik University of Technology (BPUT)RourkelaIndia

Personalised recommendations