PDF Analysis of Different Channel Models in FSO

  • Chinmayee PandaEmail author
  • K. Pitambar Patra
  • Asutosh Padhy
  • Urmila Bhanja
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 37)


Recently free-space optical communication (FSO) is a high-demanding technique due to the high ability it offers. But it is limited to certain fields due to some drawbacks. Generally, this communication is used for short range applications due to the presence of various atmospheric hazards. Here we are analyzing and comparing the PDF of various channel models such as Gamma-Gamma, log-normal, Nakagami, Weibull distribution, K- distribution, and Negative exponential.


FSO Turbulences PDF Channel models Modulation 


  1. 1.
    J. Kaufmann, FSO: an overview of applications and technologies, in Proceedings of the Boston IEEE Communications Society Meeting (2011)Google Scholar
  2. 2.
    A. Malik, P. Singh, FSO: recent applications and future challenges. Int. J. Opt. (2015)Google Scholar
  3. 3.
    A. Gupta, P. Anand, R. Khajuria, S. Bhagat, R.K. Jha, A survey of FSO network channel over optical fiber cable communication. Int. J. Comput. Appl. 105, 32–36 (2014)Google Scholar
  4. 4.
    R.J. Hill, S.F. Clifford, R.S. Lawrence, Refractive-index and absorption variations in the infrared caused by temperature, humidity, and pressure deviations. J. Opt. Soc. Am. 70 (10), 1192–1205 (1980)CrossRefGoogle Scholar
  5. 5.
    H. Hennes, O. Wilfert, An introduction to FSO. Radio Eng. 19(2) (2010)Google Scholar
  6. 6.
    R.K.Z. Sahbudin, M. Kamarulzaman, S. Hitam, M. Mokhtar, S.B.A. Anas, Performance of SAC OCDMA-Free space optical communication systems. Optik 124(17), 2868–2870 (2013)CrossRefGoogle Scholar
  7. 7.
    G. Kaur, V. Sharma, High speed, long distance OFDM-FSO transmission link incorporating OSSB and OTSB techniques. Optik 124(23), 6111–6114 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Jaedon, E. Lee, Y. Giwan, ABER of the Alamouti scheme in gamma-gamma fading channels. IEEE Photon. Technol. (2011)Google Scholar
  9. 9.
  10. 10.
    P. Dharmawansa, N. Rajatheva, K. Ahmed, On the distribution of the sum of Nakagami-mrandom variables. IEEE Trans. Comm. 55(7), 1407–1416 (2007)CrossRefGoogle Scholar
  11. 11.
    A.J. Jr. Hallinan, A review of the Weibull distribution. J. Qual. Technol. 25, 85–93 (1993)Google Scholar
  12. 12.
    D. Blacknell, Qualitative analysis of parameter estimators for K-distribution. IEE Proc. Radar Sonar Navig. 141(1), 45–52 (1994)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    B. Dima, Simple formation of Gamma, Gamma-Gamma and K-distribution with exponential autocorrelation function. J. Light. Technol. 34(9) (2016)Google Scholar
  15. 15.
    A. Jain, D.V. Prakash, L. Arya, Evaluation of fading statistics of Nakagami channel with Weibull distributed tolerable outage time. Wirel. Eng. Technol. 3(2) (2012)Google Scholar
  16. 16.
    E. Jakeman, R.J.A. Tough, Generalized K distribution: a statistical model for weak scattering. J Opt. Soc. Am. 4(9), 1764–1772 (1987)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chinmayee Panda
    • 1
    Email author
  • K. Pitambar Patra
    • 1
  • Asutosh Padhy
    • 1
  • Urmila Bhanja
    • 2
  1. 1.Department of Electronics and Communication EngineeringEATM, BBSROdishaIndia
  2. 2.Department of Electronics and Communication EngineeringIGIT, SarangOdishaIndia

Personalised recommendations