Host–Polyembryonic Parasitoid Interactions

  • Kikuo Iwabuchi
Part of the Entomology Monographs book series (ENTMON)


Entry into the host body is a prerequisite for successful completion of the endoparasitoid life cycle. Most endoparasitoids achieve this by laying eggs directly inside the body cavity of the host. In most braconid and ichneumonid parasitoids, the ovipositor is inserted within the host hemocoel to lay eggs, and the hatched larvae grow and develop rapidly inside the host hemolymph as host development advances and finally consume the host tissues, leading to death of the host, which is why parasitic wasps are usually referred to as “parasitoids.” By contrast, egg–larval endoparasitoids, such as those in the genus Ascogaster (family Braconidae), lay their eggs inside the host embryo or alternatively in the yolk of the host egg, following which the newly hatched larvae enter the host embryo. However, the polyembryonic egg–larval endoparasitoid Copidosoma floridanum cannot employ this strategy due to its prolonged morula stage, so this species has evolved a novel approach for entering the host body that involves tissue-compatible invasion by the motile morula.


Immune evasion Innate immunity Host-parasitoid interactions Hemocytes Hormones Embryonic development 


  1. Abe Y, Koyama K (1991) Embryonic development and selective oviposition of a dryinid wasp, Haplogonatopus atratus Esaki et Hashimoto (Hymenoptera: Dryinidae). Jpn J Appl Entomol Zool 35:57–63CrossRefGoogle Scholar
  2. Akai H, Sato S (1971) An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori. J Insect Physiol 17:1665–1676CrossRefGoogle Scholar
  3. Ali R, Kim Y (2012) A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Olutella xylostella parasitized by Cotesia plutellae. J Invertebr Pathol 110:389–397CrossRefGoogle Scholar
  4. Ali R, Lim J, Kim Y (2015) Transcriptome of a specialized extra-embryonic cell, teratocyte, and its host immunosuppressive role revealed by ex vivo RNA interference. Insect Mol Biol 24:13–28PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arnold JW, Hinks CF (1976) Haemopoiesis in Lepidoptera 1. The multiplication of circulating haemocytes. Can J Zool 54:1003–1012CrossRefGoogle Scholar
  6. Asgali S, Schmidt O, Theopold U (1997) A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppressor. J Gen Virol 78:3061–3070CrossRefGoogle Scholar
  7. Asgali S, Zhang G, Zareie R, Schmidt O (2003) A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol 33:1017–1024CrossRefGoogle Scholar
  8. Asgari S, Rivers DB (2011) Venom proteins from endoparasitoid wasps and their role in the host-parasite interactions. Annu Rev Entomol 56:313–335PubMedCrossRefPubMedCentralGoogle Scholar
  9. Asgari S, Schmidt O (1994) Passive protection of eggs from the parasitoid, Cotesia rubecula, in the host, Pieris rapae. J Insect Physiol 40:789–795CrossRefGoogle Scholar
  10. Asgari S, Hellers M, Schmidt O (1996) Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J Gen Virol 77:2653–2662PubMedCrossRefGoogle Scholar
  11. Asgari S, Theopold U, Wellby C, Schmidt O (1998) A protein with protective properties against the cellular defense reaction in insects. Proc Natl Acad Sci Am 95:3690–3695CrossRefGoogle Scholar
  12. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844PubMedCrossRefGoogle Scholar
  13. Baehrecke EH, Strand MR (1990) Embryonic morphology and growth of the polyembryonic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Int J Insect Morphol Embryol 19:165–175CrossRefGoogle Scholar
  14. Baehrecke EH, Aiken JM, Dover BA, Strand MR (1993) Ecdysteroid induction of embryonic morphogenesis in a parasitic wasp. Dev Biol 158:275–287CrossRefGoogle Scholar
  15. Bai SF, Cai DZ, Li X, Chen XX (2009) Parasitic castration of Plutella xylostella larvae induced by polydnaviruses and venom of Cotesia vestalis and Diadegma semiclausum. Arch Insect Biochem Physiol 70:30–43PubMedCrossRefGoogle Scholar
  16. Barratt BI, Evans AA, Stolz DB, Vinson SB, Easingwood R (1999) Virus-like particles in the ovaries of Microtonus oethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of adult weevils (Coleoptera: Curculionidae). J Invertebr Pathol 73:182–188PubMedCrossRefGoogle Scholar
  17. Barreau C, Touray M, Pimenta PF, Miller LH, Vernick KD (1995) Plasmodium gallinaceum: sporozoite invasion of Aedes aegypti salivary glands is inhibited by anti-gland antibodies and by lectins. Exp Parasitol 81:332–343PubMedCrossRefGoogle Scholar
  18. Basio NAM, Kim Y (2005) A short review of teratocytes and their characters in Cotesia plutellae (Braconidae: Hymenoptera). J Asia Pac Entomol 8:211–217CrossRefGoogle Scholar
  19. Basseri HR, Tew IF, Ratcliffe NA (2002) Identification and distribution of carbohydrate moieties on the salivary glands of Rhodnius prolixus and their possible involvement in attachment/invasion by Trypanosoma rangeli. Exp Parasitol 100:226–234PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bauer R, Loer B, Ostrowski K, Martini J, Weimbs A, Lechner H, Hoch M (2005) Intercellular communication: the Drosophila innexin multiprotein family of gap junction proteins. Chem Biol 12:515–526PubMedCrossRefPubMedCentralGoogle Scholar
  21. Beach RM, Todd JW (1986) Foliage consumption and larval development of parasitized and unparasitized soybean looper, Pseudoplusia includens [Lep.: Noctuidae], reared on a resistant soybean genotype and effects on an associated parasitoid, Copidosoma truncatellum [Hym.: Encyrtidae]. Entomophaga 31:237–242CrossRefGoogle Scholar
  22. Beaulaton J (1979) Hemocytes and hemocytopoiesis in silkworms. Biochem Mol Biol 61:157–164Google Scholar
  23. Beck M, Strand MR (2003) RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells. Virology 314:521–535PubMedCrossRefPubMedCentralGoogle Scholar
  24. Beck M, Strand MR (2005) Glc1.8 from Microplitis demolitor bracovirus induces a loss of adhesion and phagocytosis in insect high five and S2 cells. J Virol 79:1861–1870PubMedPubMedCentralCrossRefGoogle Scholar
  25. Beck M, Theopold U, Schmidt O (2000) Evidence for serine protease inhibitor activity in the ovarian calyx fluid of the endoparasitoid Venturia canescens. J Insect Physiol 46:1275–1283PubMedCrossRefPubMedCentralGoogle Scholar
  26. Beckage NE (1985) Endocrine interactions between endoparasitic insects and their hosts. Annu Rev Entomol 30:371–413CrossRefGoogle Scholar
  27. Beckage NE (1998) Modulation of immune responses to parasitoid by polydnavirus. Parasitology 116:S57–S64PubMedCrossRefPubMedCentralGoogle Scholar
  28. Beckage NE (2008) Insect immunology. Academic, Amsterdam, BostonGoogle Scholar
  29. Beckage NE, Gelman DB (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Entomol 49:299–330PubMedCrossRefPubMedCentralGoogle Scholar
  30. Beckage NE, Riddiford LM (1983) Growth and development of the endoparasitic wasp Apanteles congregatus: dependence on host nutritional status and parasite load. Physiol Entomol 8:231–241CrossRefGoogle Scholar
  31. Bedding RA (1967) Parasitic and free-living cycles in entomophagous nematodes of the genus Deladenus. Nature 214:174–175PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bedding RA (1972) Biology of Deladenus siridicola (Neotylenchidae) an entomophagous–mycetophagous nematode parasitic in siricid wood-wasps. Nematologica 18:482–493CrossRefGoogle Scholar
  33. Bedwin O (1979) An insect glycoprotein: a study of the particles responsible for the resistance of the parasitoid’s egg to the defence reactions of its insect host. Proc R Soc B 205:271–286Google Scholar
  34. Beeman SC, Wilson ME, Bulla LA, Consigli RA (1983) Structural Characterization of the hemocytes of Plodia interpunctella. J Morphol 175:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  35. Bendel-Stenzel M, Anderson R, Heasman J, Wylie C (1998) The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol 9:393–400PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bentin-Ley U, Horn T, Sjogren A, Sorensen S, Larsen JF, Hamberger L (2000) Ultrastructure of human blastocyst-endometrial interactions in vitro. J Reprod Fertil 120:337–350PubMedCrossRefPubMedCentralGoogle Scholar
  37. Bezier A, Louis F, Jancek S, Periquet G, Theze J, Gyapay G, Musset K, Lesobre J, Lenoble P, Dupuy C, Gundersen-Rindal D, Herniou EA, Drezen JM (2013) Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregate: insights into the evolutionary dynamics of bracoviruses. Philos Trans R Soc B 368:20130047CrossRefGoogle Scholar
  38. Bhat S, Mettus RV, Ugen KE, Srikanthan V, Williams WV, Weiner DB (1993) The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206-275. AIDS Res Hum Retroviruses 9:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  39. Blaschuk OW, Sullivan R, David S, Pouliot Y (1990) Identification of a cadherin cell adhesion recognition sequence. Dev Biol 139:227–229PubMedCrossRefPubMedCentralGoogle Scholar
  40. Bonazzi M, Lecuit M, Cossart P (2009) Listeria monocytogenes internalin and E-cadherin: from bench to bedside. Cold Spring Harb Perspect Biol 1:a003087PubMedPubMedCentralCrossRefGoogle Scholar
  41. Brennan JD, Kent M, Dhar R, Fujioka H, Kumar N (2000) Anopheles gambiae salivary gland proteins as putative targets for blocking transmission of malaria parasites. Proc Natl Acad Sci U S A 97:13859–13864PubMedPubMedCentralCrossRefGoogle Scholar
  42. Brey PT, Lee W-J, Yamakawa M, Koizumi Y, Perrot S, Francois M, Ashida M (1993) Role of the integument in insect immunity: epicuticlar abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc Natl Acad Sci U S A 90:6275–6279PubMedPubMedCentralCrossRefGoogle Scholar
  43. Brown JJ, Reed DA (1997) Host embryonic and larval castration as a strategy for the individual castrator and the species. In: Beckage NE (ed) Parasites and pathogens effects on host hormones and behavior. International Thompson Publishing, New YorkGoogle Scholar
  44. Byers JR, Yu DS, Jones JW (1993) Parasitism of the army cutworm, Euxoa auxiliaris (Grt) (Lepidoptera, Noctuidae), by Copidosoma bakeri (Howard) (Hymenoptera, Encyrtidae) and effect on crop damage. Can Entomol 125:329–335CrossRefGoogle Scholar
  45. Cai J, Ye G-Y, Hu C (2004) Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J Insect Physiol 50:315–322PubMedCrossRefPubMedCentralGoogle Scholar
  46. Cherbas L (1973) The induction of an injury reaction in cultured hemocytes from saturniid pupae. J Insect Physiol 19:2011–2023CrossRefGoogle Scholar
  47. Chevignon G, Theze J, Cambier S, Poulain J, Da Silva C, Bezier A, Musset K, Moreau SJ, Drezen JM, Huguet E (2014) Functional annotation of Cotesia congregate bracovirus: identification of viral genes expressed in parasitized host immune tissues. J Virol 88:8795–8812PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F, Krasnow MA (2002) Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108:865–876PubMedCrossRefPubMedCentralGoogle Scholar
  49. Clausen CP (1972) Entomophagous insects. Hafner Publishing Company, New YorkGoogle Scholar
  50. Colinet D, Schmitz A, Depoix D, Crochard D, Poirie M (2007) Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog 3:e203PubMedPubMedCentralCrossRefGoogle Scholar
  51. Coodin S, Caveney S (1992) Lipophorin inhibits the adhesion of cockroach (Periplaneta Americana) haemocytes in vitro. J Insect Physiol 38:853–862CrossRefGoogle Scholar
  52. Cooper D, Eleftherianos I (2017) Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol 8:539PubMedPubMedCentralCrossRefGoogle Scholar
  53. Corbet S (1968) The influence of Ephestia kuehniella on the development of its parasite Nemeritis canescens. J Exp Biol 48:291–304Google Scholar
  54. Corley LS, Strand MR (2003) Evasion of encapsulation by the polyembryonic parasitoid Copidosoma floridanum is mediated by a polar body-derived extraembryonic membrane. J Invertebr Pathol 83:86–89PubMedCrossRefGoogle Scholar
  55. Dahlman DL (1990) Evaluation of teratocyte function; An Overview. Arch Insect Biochem Physiol 13:159–166CrossRefGoogle Scholar
  56. Dahlman DH, Vinson SB (1993) Teratocytes: developmental and biochemical characteristics. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, San Diego, pp 145–165CrossRefGoogle Scholar
  57. Danneels EL, Rivers DB, de Graaf DC (2010) Venom protections of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins 2:494–516PubMedPubMedCentralCrossRefGoogle Scholar
  58. Danneels E, Formesyn E, Hahn D, Denlinger D, Cardoen D, Wenseleer T, Schoofs L, de Graaf D (2013) Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochem Mol Biol 43:1189–1200PubMedCrossRefGoogle Scholar
  59. Davies DH, Vinson SB (1986) Passive evasion by eggs of braconid parasitoid, Cardiochiles nigriceps, of encapsulation in vitro by haemocytes of host Heliothis virescens. Possible role of fibrous layer in immunity. J Insect Physiol 32:1003–1010CrossRefGoogle Scholar
  60. Dean P, Richards HE, Edwards JP, Reynolds SE, Charnley K (2004) Microbial infection causes the appearance of hemocytes with extreme spreading ability in monolayers of the tobacco hornworm Manduca sexta. Dev Comp Immunol 28:689–700PubMedCrossRefGoogle Scholar
  61. Desneux N, Barta RJ, Delebacque CJ, Heimpel GE (2009) Transient host paralysis as a means of reducing self-superparasitism in koinobiont endoparasitoids. J Insect Physiol 55:321–327PubMedCrossRefGoogle Scholar
  62. Dinglasan RR, Jacobs-Lorena M (2005) Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 73:7797–7807PubMedPubMedCentralCrossRefGoogle Scholar
  63. Dittrick L, Chiang HC (1982) Developmental characteristics of Macrocentrus grandii as influenced by temperature and instar of its host, the European corn borer. J Insect Physiol 28:47–52CrossRefGoogle Scholar
  64. Edson KM, Barlin MR, Vinson SB (1982) Venom apparatus of braconid wasps: comparative ultrastructure of reservoirs and gland filaments. Toxicon 20:553–562PubMedCrossRefGoogle Scholar
  65. Edwards JP, Weaver RJ, Marris GC (2001) Endocrine changes in lepidopteran larvae: potential challenges to parasitoid development and survival. In: Edwards JP, Weaver RJ (eds) Endocrine interactions of insect parasites and pathogens. BIOS Scientific Publications Limited, Oxford, pp 1–32Google Scholar
  66. Elaine HR, Neil MP (2000) Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. J Invertebr Pathol 76:33–42CrossRefGoogle Scholar
  67. Enders AC, Schlafke S (1972) Implantation in the ferret: epithelial penetration. Am J Anat 133:291–316PubMedCrossRefGoogle Scholar
  68. Epstein ML, Gilula NB (1977) A study of communication specificity between cells in culture. J Cell Biol 75:769–787PubMedCrossRefGoogle Scholar
  69. Etebari K, Palfreyman RW, Schlipalius D, Nielsen LK, Glatz RV, Asgari S (2011) Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genomics 12:446PubMedPubMedCentralCrossRefGoogle Scholar
  70. Fang Q, Wang F, Zhu J, Li Y, Song Q, Stanley D, Akhtar Z, Ye G (2010) Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genomics 11:484PubMedPubMedCentralCrossRefGoogle Scholar
  71. Feddersen I, Sander K, Schmidt O (1986) Virus-like particles with host protein-like antigenic determinants protect an insect parasitoid from encapsulation. Experientia 42:1278–1281CrossRefGoogle Scholar
  72. Ferguson MA (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 352:1295–1302PubMedPubMedCentralCrossRefGoogle Scholar
  73. Fleming JGW (1992) Polydnaviruses: mutualists and pathogens. Annu Rev Entomol 37:401–425PubMedCrossRefGoogle Scholar
  74. Forbes A, Lehmann R (1999) Cell migration in Drosophila. Curr Opin Genet Dev 9:473–478PubMedCrossRefGoogle Scholar
  75. Gardiner EMM, Strand MR (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 43:147–164PubMedCrossRefGoogle Scholar
  76. Gentsch JR, Pacitti AF (1987) Differential interaction of reovirus type 3 with sialylated receptor components on animal cells. Virology 161:245–248PubMedCrossRefGoogle Scholar
  77. Giepman B (2006) Role of connexin-43-interacting proteins at gap junctions. Adv Cardiol 42:41–56CrossRefGoogle Scholar
  78. Giron D, Dunn DW, Hardy ICW, Strand MR (2004) Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430:676–679PubMedCrossRefGoogle Scholar
  79. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, PrincetonCrossRefGoogle Scholar
  80. Götz P (1986) Mechanisms of encapsulation in dipteran hosts. In: Lackie AM (ed) Immune mechanisms in invertebrate vectors. Clarendon, Oxford, pp 1–19Google Scholar
  81. Götz P, Boman HG (1985) Insect immunity. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 3. Pergamon Press, Oxford, pp 453–485Google Scholar
  82. Gotz P, Boman HG (1985) Insect immunity. In: Kerkut GA, Gilbert LJ (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 11. Pergamon, Oxford, pp 453–485Google Scholar
  83. Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360:254–256CrossRefGoogle Scholar
  84. Grbic M, Rivers D, Strand MR (1997) Caste formation in the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae): in vivo and in vitro analysis. J Insect Physiol 43:553–565CrossRefGoogle Scholar
  85. Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258:241–258PubMedPubMedCentralCrossRefGoogle Scholar
  86. Grossniklaus-Burgin C, Lanzrein B (1990) Qualitative and quantitative analyses of juvenile hormone and ecdysteroids from the egg to the pupal molt in Trichoplusia ni. Arch Insect Biochem Physiol 14:13–30PubMedCrossRefPubMedCentralGoogle Scholar
  87. Guglielmino A (2002) Dryinidae (Hymenoptera Chrysidoidea): an interesting group among the natural enemies of the Auchenorrhyncha (Hemiptera). Neue Folge 176:549–556Google Scholar
  88. Gupta AP (1979) Hemocyte types: their structures, synonymies interrelationships and taxonomic significance. In: Gupta AP (ed) Insect hemocytes: development, forms, functions and techniques. Cambridge University Press, Cambridge, London, p 23CrossRefGoogle Scholar
  89. Gupta AP (1985) In: Kerkut GA, Gilbert LI (eds) Cellular elements in the hemolymph, vol 3. Pergamon Press, New York, pp 401–451Google Scholar
  90. Gupta AP (1986) Hemocytic and humoral immunity in arthropods. Wiley-Interscience, New York, 535 ppGoogle Scholar
  91. Gupta AP (1991a) Insect immunocytes and other hemocytes: roles in cellular and humoral immunity. In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press, MI/London, pp 22–118Google Scholar
  92. Gupta AP (1991b) Gap junctions. In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press Inc., Boca Raton, pp 19–118Google Scholar
  93. Hammache D, Pieroni G, Yahi N, Delezay O, Koch N, Lafont H, Tamalet C, Fantini J (1998) Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J Biol Chem 273:7967–7971PubMedCrossRefPubMedCentralGoogle Scholar
  94. Han SS, Gupta AP (1989) Arthropod immune system. II. Encapsulation of implanted nerve cord and “plain gut” surgical structure by granulocytes of Blattella germanica (L) (Dictyoptera: Blattellidae). Zool Sci 6:303–320Google Scholar
  95. Han S-S, Lee M-H, Kim W-K, Wago H, Yoe S-M (1998) Hemocytic differentiation in hemopoietic organ of Bombyx mori larvae. Zool Sci 15:371–379PubMedCrossRefPubMedCentralGoogle Scholar
  96. Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19:6030–6040PubMedPubMedCentralCrossRefGoogle Scholar
  97. Harvey JA, Harvey IF, Thompson DJ (1995) The effect of host nutrition on growth and development of the parasitoid wasp Venturia canescens. Entomol Exp Appl 75:213–220CrossRefGoogle Scholar
  98. Harvey JA, Corley LS, Strand MR (2000) Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406:183–186PubMedCrossRefPubMedCentralGoogle Scholar
  99. Hawlitzky N (1972) Mode of penetration of an egg-larva parasite, Phanerotoma flavitestacea FISH. [Hymanoptera: Braconidae], into the embryo of its host, Anagasta kuehniella ZELL. [Lepidoptera: Pyralidae]. Entomophaga 17:375–389CrossRefGoogle Scholar
  100. Hawlitzky N (1979) Pathology of microsporidiosis of cabbage looper larvae, Trichoplusia ni [Lep. :Noctuidae] byVairimorpha necatrix. Entomophaga 24:237–245CrossRefGoogle Scholar
  101. Hayakawa Y, Yazaki K (1997) Envelope protein of parasitic wasp’s symbiont virus, polydnavirus, protects the wasp eggs from cellular immune reactions by the host insect. Eur J Biochem 246:820–826PubMedCrossRefPubMedCentralGoogle Scholar
  102. Herniou EA, Huguet E, Theze J, Bezier A, Periquet G, Drezen J-M (2018) When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos Trans R Soc B 368:20130051CrossRefGoogle Scholar
  103. Hinks CF, Arnold JW (1977) Haemopoiesis in Lepidoptera. II. The role of haemopoietic organs. Can J Zool 55:1740–1755CrossRefGoogle Scholar
  104. Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  105. Hoshino K, Iwabuchi K (2004) Adhesion and cytoplasmic extension of Xylotrechus pyrrhoderus (Coleoptera; Cerambycidae) hemocytes induced by 20-hydroxyecdysone and juvenile hormone in vitro. Appl Entomol Zool 39:209–216CrossRefGoogle Scholar
  106. Hotta M, Okuda T, Tanaka T (2001) Cotesia kariyai teratocytes: growth and development. J Insect Physiol 47:31–41PubMedCrossRefPubMedCentralGoogle Scholar
  107. Hu J, Zhu XX, Fu WJ (2003) Passive evasion of encapsulation in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae), a polyembryonic parasitoid of Ostrinia furnacalis Guenee (Lepidoptera: Pyralidae). J Insect Physiol 49:367–375PubMedCrossRefPubMedCentralGoogle Scholar
  108. Hu J, Yu X, Fu W, Zhang W (2008) A Helix pomatia lectin binding protein on the extraembryonic membrane of the polyembryonic wasp Macrocentrus cingulum protects embryos from being encapsulated by hemocytes of host Ostrinia furnaclis. Dev Comp Immunol 32:356–364PubMedCrossRefGoogle Scholar
  109. Hu J, Xu Q, Yu X, Liang Z, Zhang W (2014) Hemomucin, an O-glycosylated protein on embryos of the wasp Macrocentrus cingulum that protects it against encapsulation by hemocytes of the host Ostrinia furnacalis. J Innate Immun 6:663–675PubMedPubMedCentralCrossRefGoogle Scholar
  110. Hunter KW, Stoner A (1975) Copidosoma truncatellum: effect of parasitization on food consumption of larval Trichoplusia ni. Environ Entomol 4:381–382CrossRefGoogle Scholar
  111. Isa P, Arias CF, Lopez S (2006) Role of sialic acids in rotavirus infection. Glycoconj J 23:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  112. Isberg RR, Barnes P (2001) Subversion of integrins by enteropathogenic Yersinia. J Cell Sci 114:21–28PubMedPubMedCentralGoogle Scholar
  113. Isberg RR, Voorhis DL, Falkow S (1987) Identification of invasion: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50:769–778PubMedCrossRefGoogle Scholar
  114. Iwabuchi K (1991) Early embryonic development of a polyembryonic wasp, Litomastix maculata Ishii, in vivo and in vitro. Appl Entomol Zool 26:563–570CrossRefGoogle Scholar
  115. Iwabuchi K (1996) Effect of juvenile hormone on the embryogenesis of a polyembryonic wasp, Copidosoma floridanum, in vitro. In Vitro Cell Dev Biol Anim 31:803–805CrossRefGoogle Scholar
  116. Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3:E117–E123PubMedCrossRefGoogle Scholar
  117. Jang AC, Starz-Gaiano M, Montell DJ (2007) Modeling migration and metastasis in Drosophila. J Mammary Gland Biol Neoplasia 12:103–114PubMedCrossRefGoogle Scholar
  118. Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. In: Soderhall K (ed) Invertebrate immunity. SpringerGoogle Scholar
  119. Jones JC (1970) In: Gordon AS (ed) Hemocytopoiesis in insects: regulation of hematopoiesis. Appleton-Century-Crofts, New York, pp 7–65Google Scholar
  120. Jones JC (1979) Pathways and pitfalls in the classification and study of insect hemocytes. In: Gupta AP (ed) Insect hemocytes. Cambridge University Press, pp 279–300Google Scholar
  121. Jones D (1989) Protein expression during parasite redirection of host (Trichoplusia ni) biochemistry. Insect Biochem 19:445–455CrossRefGoogle Scholar
  122. Jones D, Jones G, Hammock BD (1981) Developmental and behavioural responses of larval Trichoplusia ni to parasitization by an imported braconid parasite Chelonus sp. Physiol Entomol 6:387–394CrossRefGoogle Scholar
  123. Jones D, Robert GJ, Steenwyk AV, Hammock BR (1982) Effect of the parasite Copidosoma truncatellum on development of its host Trichoplusia ni. Ann Entomol Soc Am 75:7–11CrossRefGoogle Scholar
  124. Kaeslin M, Wehrle I, Grossniklaus-Burgin C, Wyler T, Guggisberg U, Schittny JC, Lanzrein B (2005) Stage-dependent strategies of host invasion in the egg-larval parasitoid Chelonus inanitus. J Insect Physiol 51:287–296PubMedCrossRefGoogle Scholar
  125. Karlsson KA (1989) Animal glycosphinogolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58:309–350PubMedCrossRefGoogle Scholar
  126. Karp RD (1993) The response to foreign tissue transplants in insects. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, New York, pp 305–316CrossRefGoogle Scholar
  127. Kathirithamby J, Ross LD, Johnston JS (2003) Masquerading as self? endoparasitic Strepsiptera (Insecta) enclose themselves in host-derived epithelial bag. Proc Natl Acad Sci U S A 100:7655–7659PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kato Y, Sato R, Sano T, Nakamatsu Y, Miura K, Tanaka T (2016) Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae) teratocytes release Mp19 protein in MpVLP, suppressing the function of hyper-spreading hemocytes in Mythimna separate. Curr Top Biochem Res 17:77–94Google Scholar
  129. Kelly GM, Hubsner E (1987) Juvenoid effects on Rhodnius prolixus embryogenesis. Insect Biochem 17:1079–1083CrossRefGoogle Scholar
  130. Kim Y, Choi JY, Je YH (2007) Cotesia plutellae bracovirus genome and its function in altering insect physiology. J Asia Pac Entomol 10:181–191CrossRefGoogle Scholar
  131. Kinuthia W, Li D, Schmidt O, Theopold U (1999) Is the surface of endoparasitic wasp eggs and larvae covered by a limited coagulation reaction? J Insect Physiol 45:501–506PubMedCrossRefGoogle Scholar
  132. Kitano H (1962) Studies on the origin of giant cells in the body fluid of Pieris rapae crucivora attacked by Apanteles glomeratus. Zool Mag 71:262–268Google Scholar
  133. Kitano H, Wago H, Arakawa T (1990) Possible role of teratocytes of the gregarious parasitoid, Cotesia (=Apanteles) glomeratus in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora. Arch Insect Biochem Physiol 13:177–185CrossRefGoogle Scholar
  134. Klomp H, Teerink BJ (1978) The epithelium of the gut as a barrier against encapsulation by blood cells in three species of parasitoids of Bupalus piniarius (Lep: Geometridae). Neth J Zool 28:132–139CrossRefGoogle Scholar
  135. Kojima T, Murata M, Go M, Spray DC, Sawada N (2007) Connexins induce and maintain tight junctions in epithelial cells. J Membr Biol 217:13–19PubMedCrossRefGoogle Scholar
  136. Koscielski B, Koscielska MK, Szroeder J (1978) Ultrastructure of the polygerm of Ageniaspis fuscicollis Dalm. (Chalcidoidea, Hymenoptera). Zoomorphology 89:279–288CrossRefGoogle Scholar
  137. Kryukova N, Dubovskiy I, Chertkova E, Vorontsova Y, Slepneva I, Glupov V (2011) The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae. J Insect Physiol 57:769–800CrossRefGoogle Scholar
  138. Kumar S, Kim Y (2016) Glyceraldehyde-3-phosphate dehydrogenase is a mediator of hemocyte-spreading behavior and molecular target of immunosuppressive factor CrV1. Dev Comp Immunol 54:97–108PubMedCrossRefGoogle Scholar
  139. Labrosse C, Stasiak K, Lesobre J, Grangeia A, Huguet E, Drezen JM, Poirie M (2005) A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)—Drosophila melanogaster interaction. Insect Biochem Mol Biol 35:93–103PubMedCrossRefGoogle Scholar
  140. Lackie AM (1979) Cellular recognition of foreign-ness in two insect species, the American cockroach and the desert locust. Immunology 36:909–914PubMedPubMedCentralGoogle Scholar
  141. Lackie AM (1988) Haemocyte behaviour. Adv Insect Physiol 21:85–177CrossRefGoogle Scholar
  142. Lafferty KD, Kurls AM (2009) Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol 25:564–572PubMedCrossRefGoogle Scholar
  143. Lampert EC, Bowers MD (2010) Host plant species affects the quality of the generalist Trichoplusia ni as a host for the polyembryonic parasitoid Copidosoma floridanum. Entomol Exp Appl 134:287–295CrossRefGoogle Scholar
  144. Lampert EC, Zangerl AR, Berenbaum MR, Ode PJ (2008) Tritrophic effects of xanthotoxin on the polyembryonic parasitoid Copidosoma sosares (Hymenoptera: Encyrtidae). J Chem Ecol 34:783–790PubMedCrossRefGoogle Scholar
  145. Lapointe R, Tanaka K, Barney WE, Whitfield JB, Banks JC, Beliveau C, Stoltz D, Webb BA, Cusson M (2007) Genomic and morphological features of a banchine polydnavirus: a comparison with bracoviruses and ichnoviruses. J Virol 81:6491–6501PubMedPubMedCentralCrossRefGoogle Scholar
  146. Lavine MD, Beckage NE (1995) Polydnaviruses: potent mediators of host immune dysfunction. Parasitol Today 11:368–378PubMedCrossRefGoogle Scholar
  147. Lawrence PO (1986) Host-parasite hormonal interactions: an overview. J Insect Physiol 32:295–298CrossRefGoogle Scholar
  148. Lea MS (1986) A Sericesthis iridescent virus infection of the hemocytes of the wax moth, Galleria mellonella: effects on total and differential counts and hemocyte ontogeny. J Invertebr Pathol 48:42–51CrossRefGoogle Scholar
  149. Leiby RW, Hill CC (1923) The twinning and monoembryonic development of Platygaster hiemalis, a parasite of the Hessian fly. J Agric Res 25:237–249Google Scholar
  150. Leiby RW, Hill CC (1924) The polyembryonic development of Platygaster vernalis. J Agric Res 28:829–839Google Scholar
  151. Lender MT, Laverdure AM (1967) Culture in vitro des ovarires de Tenebrio molitor (Coleoptere). Croissance et vitellogeneses. C R Seances Acad Sci D 265:451–454Google Scholar
  152. Leonard C, Ratcliffe NA, Rowley AF (1985) The role of prophenoloxidase activation in non-self recognition and phagocytosis by insect blood cells. J Insect Physiol 31:789–799CrossRefGoogle Scholar
  153. Li X, Webb BA (1994) Apparent functional role for a cysteine-rich polydnavirus protein in suppression of insect cellular immunity. J Virol 68:7482–7489PubMedPubMedCentralCrossRefGoogle Scholar
  154. Li Y, Sun X, Dey SK (2015) Entosis allows timely elimination of the liminal epithelial barrier for embryo implantation. Cell Rep 11:358–365PubMedPubMedCentralCrossRefGoogle Scholar
  155. Ling E, Shirai K, Kanekatsu R, Kiguchi K (2003) Classification of larval circulating hemocytes of the silkworm, Bombyx mori, by acridine orange and propidium iodide staining. Histochem Cell Biol 120:505–511PubMedCrossRefGoogle Scholar
  156. Ling E, Shirai K, Kanekatsu K, Kiguchi K (2005) Hemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: prohemocytes have the function of phagocytosis. Cell Tissue Res 320:535–543PubMedCrossRefGoogle Scholar
  157. Lingwood CA, Binnington B, Manis A, Branch DR (2010) Globotriaosyl ceramide receptor function—where membrane structure and pathology intersect. FEBS Lett 584:1879–1886PubMedCrossRefGoogle Scholar
  158. Liu NY, Huang JM, Ren XM, Xu ZW, Yan NS, Zhu JY (2018) Superoxide dismutase from venom of the ectoparasitoid Scleroderma quani inhibits melanization of hemolymph. Arch Insect Biochem Physiol 99:e21503PubMedCrossRefGoogle Scholar
  159. Lu JF, Chen XX, Zhu XX, Fu WJ (2007) Encapsulation of implanted foreign bodies by haemocytes in Ostrinia furnacalis larvae. J Zhejiang Univ (Agriculture and Life Sciences) 33:119–227Google Scholar
  160. Luckhart SL, Webb BA (1996) Interaction of a wasp ovarian protein and csPDV in host immune suppression. Dev Comp Immunol 20:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  161. Mandato CA, Diehl-Jones W, Dower RGH (1996) Insect hemocyte adhesion in vitro: inhibition by apolipophorin 1 and an artificial substrate. J Insect Physiol 42:143–148CrossRefGoogle Scholar
  162. Mangalika PR, Kawamoto T, Takahashi-Nakaguchi A, Iwabuchi K (2010) Characterization of cell clusters in larval hemolymph of the cabbage armyworm Mamestra brassicae and their role in maintenance of hemocyte populations. J Insect Physiol 56:314–323PubMedCrossRefGoogle Scholar
  163. Marra A, Isberg RR (1996) Common entry mechanisms. Bacterial pathogenesis. Curr Biol 6:1084–1086PubMedCrossRefGoogle Scholar
  164. Martinson EO, Wheeler D, Wright J, Mrinalini, Siebert AL, Werren JH (2014) Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol Ecol 23:5918–5930PubMedPubMedCentralCrossRefGoogle Scholar
  165. Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1:a002899PubMedPubMedCentralCrossRefGoogle Scholar
  166. Mitsuhashi J, Inoue H (1988) Obtainment of a continuous cell line from the larval fat bodies of the mulberry tiger moth, Spilosoma imparilis (Lepidoptera: Arctiidae). Appl Entomol Zool 23:488–490CrossRefGoogle Scholar
  167. Monpeyssin M, Beaulaton J (1978) Hemocytopoiesis in the oak silkworm Antheraea pernyi and some other Lepidoptera. J Ultrastruct Res 64:35–45PubMedCrossRefGoogle Scholar
  168. Montell DJ (2001) Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech Dev 105:19–25PubMedCrossRefGoogle Scholar
  169. Montell DJ (2003) Border-cell migration: the race is on. Nat Rev Mol Cell Biol 4:13–24PubMedCrossRefGoogle Scholar
  170. Moore E, Haspel G, Libersat F, Adams M (2006) Parasitoid wasp sting: a cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host. J Neurobiol 66:811–820PubMedCrossRefGoogle Scholar
  171. Moran AP, Prendergast MM (2001) Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J Autoimmun 16:241–256PubMedCrossRefGoogle Scholar
  172. Moreau SJM, Asgari S (2015) Venom proteins from parasitoid wasps and their biological functions. Toxin Rev 7:2385–2412CrossRefGoogle Scholar
  173. Moreau SJM, Cherqui A, Doury G, Dubois F, Fourdrain Y, Sabatier L, Bulet P, Saarela J, Prevost G, Giordanengo P (2004) Identification of an aspartylglucosaminidase-like protein in the venom of the parasitic wasp Asobara tabida (Hymenoptera: Braconidae). Insect Biochem Mol Biol 34:485–492PubMedCrossRefPubMedCentralGoogle Scholar
  174. Murphy N, Banks J, Whitfield JB, Austin A (2008) Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol Phylogenet Evol 47:378–395PubMedCrossRefPubMedCentralGoogle Scholar
  175. Nakaguchi A, Hiraoka T, Endo Y, Iwabuchi K (2006) Compatible invasion of a phylogenetically distant host embryo by a hymenopteran parasitoid embryo. Cell Tissue Res 324:167–173PubMedCrossRefPubMedCentralGoogle Scholar
  176. Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2003a) Effects of silkworm paralytic peptide on in vitro hematopoiesis and plasmatocyte spreading. Arch Insect Biochem Physiol 52:163–174PubMedCrossRefPubMedCentralGoogle Scholar
  177. Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2003b) In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J Insect Physiol 49:907–916PubMedCrossRefPubMedCentralGoogle Scholar
  178. Nakamatsu Y, Fujii S, Tanaka T (2002) Larvae of an endoparasitoid, Cotesia kariyai (Hymenoptera: Braconidae), feed on the host fat body directly in the second stadium with the help of teratocytes. J Insect Physiol 48:1041–1052PubMedCrossRefPubMedCentralGoogle Scholar
  179. Nardi JB, Pilas B, Ujhelyi E, Garsha K, Kanost M (2003) Hematopoietic organs of Manduca sexta and hemocyte lineages. Dev Genes Evol 213:477–491PubMedCrossRefPubMedCentralGoogle Scholar
  180. Nenon MJ-P (1972a) Culture in vitro des embryons d’un Hymenoptere endoparasite polyembryonnaire: Ageniaspis fuscicollis (= Encyrtus fuscicollis). Role des hormones de synthese. C R Seances Acad Sci D 274:3299–3302Google Scholar
  181. Nenon MJ-P (1972b) Culture in vitro des larves d’un Hymenoptere endoparasite Polyembryonnaire: Ageniaspis fuscicollis. Role des hormones de synthese. C R Seances Acad Sci D 274:3409–3415Google Scholar
  182. Niewiadomska P, Godt D, Tepass U (1999) DE-cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144:533–547PubMedPubMedCentralCrossRefGoogle Scholar
  183. Nishikawa H, Yoshimura J, Iwabuchi K (2013) Sex differences in the protection of host immune systems by a polyembryonic parasitoid. Biol Lett 9:20130839PubMedPubMedCentralCrossRefGoogle Scholar
  184. Nittono Y (1960) Studies on the blood cells in the silkworm, Bombyx mori. Bull Sericult Exp Station 16:171–266Google Scholar
  185. Nittono Y, Tomabechi S, Onodera N (1964) Formation of hemocytes near Imaginal wing discs in the silkworm Bombyx mori L. (preliminary note). J Sericult Sci Jpn 33:43–45Google Scholar
  186. Noyes JS (1988) Copidosoma truncatellum (Dalman) and C. floridanum (Ashmead) (Hymenoptera, Encyrtidae), two frequently misidentified polyembryonic parasitoids of catterpillars (Lepidoptera). Syst Entomol 13:197–204CrossRefGoogle Scholar
  187. Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185PubMedCrossRefPubMedCentralGoogle Scholar
  188. Ode PJ, Strand MR (1995) Progeny and sex allocation decisions of the Polyembryonic wasp Copidosoma floridanum. J Anim Ecol 64(2):213CrossRefGoogle Scholar
  189. Ode PJ, Berenbaum MR, Zangerl AR, Hardy ICW (2004) Host plant, host chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104:388–400CrossRefGoogle Scholar
  190. Okazaki T, Okudaira N, Iwabuchi K, Fugo H, Nagai T (2006) Apoptosis and adhesion of hemocytes during molting stage of silkworm, Bombyx mori. Zool Sci 23:299–304PubMedCrossRefPubMedCentralGoogle Scholar
  191. Okuda T, Kadono-Okuda K (1995) Perilitus coccinellae teratocytes polypeptide: evidence for production of a teratocyte-specific 540 kDa protein. J Insect Physiol 41:819–825CrossRefGoogle Scholar
  192. Omata K (1989) Control mechanisms of larval diapause and quiescence in Trogus mactator, an endoparasite of papilionids. Entomol Exp Appl 53:31–37CrossRefGoogle Scholar
  193. Orr DB, Boethel DJ (1985) Comparative development of Copidosoma truncatellum (Hymenoptera: Encyrtidae) and its host, Pseudoplusia includens (Lepidoptera: Noctuidae), on resistant and susceptible soybean genotypes. Environ Entomol 14:612–616CrossRefGoogle Scholar
  194. Pacquelet A, Rorth P (2005) Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J Cell Biol 170:803–812PubMedPubMedCentralCrossRefGoogle Scholar
  195. Panchin YV (2005) Evolution of gap junction proteins—The pannexin alternative. J Exp Biol 208:1415–1419PubMedCrossRefPubMedCentralGoogle Scholar
  196. Parker HL (1931) Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite in the European corn borer. Tech Bull US Dep Agric 230:1–62Google Scholar
  197. Pech LL, Strand MR (1996) Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 109:2053–2060PubMedGoogle Scholar
  198. Pennacchio F, Vinson SB, Tremblay E, Ostuni A (1994) Alteration of ecdysone metabolism in Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae induced by the endophagous parasitoid Cardiochiles nigriceps Vierick (Hymenoptera: Braconidae) teratocytes. Insect Biochem Mol Biol 24:383–394CrossRefGoogle Scholar
  199. Perrone JB, DeMaio SA (1986) Regions of mosquito salivary glands distinguished by surface lectin-binding characteristics. Insect Biochem 16:313–318CrossRefGoogle Scholar
  200. Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245PubMedCrossRefPubMedCentralGoogle Scholar
  201. Piek T (1982) Delta-philanthotoxin, a semi-irreversible blocker of ion-channels. Comp Biochem Physiol C 72:311–315PubMedCrossRefPubMedCentralGoogle Scholar
  202. Poinar GO Jr, Leutenegger R, Gotz P (1968) Ultrastructure of the formation of a melanotic capsule in Diabrotica (Coleoptera) in response to a parasitic nematode (Mermithidae). J Ultrastruct Res 25:293–306PubMedCrossRefPubMedCentralGoogle Scholar
  203. Pruijssers AJ, Strand MR (2007) PTP-H2 and PTP-H3 from Microplitis demolitor bracovirus localize to focal adhesions and antiphagocytic in insect immune cells. J Virol 81:1209–1219PubMedCrossRefPubMedCentralGoogle Scholar
  204. Qian C, Liu Y, Fang Q, Min-Li Y, Liu S, Ye G, Li Y (2013) Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. Arch Insect Biochem Physiol 83:211–231PubMedCrossRefGoogle Scholar
  205. Quicke LJQ (1997) Parasitic wasps. Chapman & Hall, London, 470 ppGoogle Scholar
  206. Quintela ED, McCoy CW (1998) Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviates (Coleoptera: Curculionidae) in soil. J Econ Entomol 91:110–122CrossRefGoogle Scholar
  207. Ratcliffe NA (1993) Cellular defense responses of insects: unresolved problems. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, San Diego, pp 267–304CrossRefGoogle Scholar
  208. Ratcliffe NA, Gagen SJ (1976) Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae larvae. J Invertebr Pathol 28:373–382CrossRefGoogle Scholar
  209. Ratcliffe NA, Rowley AF (1974) In vitro phagocytosis of bacteria by insect blood cells. Nature 252:391–1391PubMedCrossRefGoogle Scholar
  210. Ratcliffe NA, Rowley AF (1979) Role of hemocytes in defense against biological agents. In: Gupta AP (ed) Insect hemocytes. Cambridge University Press, New York, pp 332–400Google Scholar
  211. Ratcliffe NA, Leonard C, Rowley AF (1984) Prophenoxidase activation: nonself recognition and cell cooperation in insect immunity. Science 226:557–559PubMedCrossRefGoogle Scholar
  212. Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:186–350Google Scholar
  213. Read AF (1990) Parasites and the evolution of host sexual behavior. In: Barnard CJ, Behnke JM (eds) Parasitism and host behavior. Taylor & Francis, London, pp 117–158Google Scholar
  214. Rechav Y, Orion T (1975) The development of the immature stages of Chelonus inanitus [Spodoptera littoralis, morphology]. Ann Entomol Soc Am 68:457–462CrossRefGoogle Scholar
  215. Reed DA, Beckage NE (1997) Inhibition of testicular growth and development in Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. J Insect Physiol 43:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  216. Reed-Larsen DA, Brown JJ (1990) Embryonic castration of the codling moth, Cydia pomonella by an endoparasitoid, Ascogaster quadridentata. J Insect Physiol 36:111–118CrossRefGoogle Scholar
  217. Reitz SR, Trumble JT (1996) Tritrophic interactions among linear furanocoumarins, the herbivore Trichoplusia ni (Lepidoptera: Noctuidae), and the polyembryonic parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environ Entomol 25:1391–1397CrossRefGoogle Scholar
  218. Riddiford LM (1975) Host hormones and insect parasites. In: Maramorosch K, Schopes RE (eds) Invertebrate immunity. Academic, New York, pp 339–353CrossRefGoogle Scholar
  219. Riddiford LM, Williams CM (1967) The effects of juvenile hormone analogues on the embryonic development of silkworms. Proc Natl Acad Sci U S A 53:595–601CrossRefGoogle Scholar
  220. Rivers DB, Denlinger DL (1994) Developmental fate of the flesh fly, Sarcophaga Bullata, envenomated by the pupal ectoparasitoid, Nasonia vitripennis. J Insect Physiol 40:121–127CrossRefGoogle Scholar
  221. Rivers DB, Denlinger DL (1995) Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). J Invertebr Pathol 66:104–110CrossRefGoogle Scholar
  222. Rivers DB, Ruggiero L, Hayes M (2002) The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera: Sarcophagidae). J Insect Physiol 48:1053–1064PubMedCrossRefPubMedCentralGoogle Scholar
  223. Rizki RM, Rizki TM (1990) Parasitoid virus-like particles destroy Drosophila immunity. Proc Natl Acad Sci 87:8388–8392PubMedCrossRefPubMedCentralGoogle Scholar
  224. Rodrigues J, Brayer FA, Alves LC, Dixit R, Barillas C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355PubMedPubMedCentralCrossRefGoogle Scholar
  225. Rosenberg HT (1934) The biology and distribution in France of the larval parasites of Cydia pomonella L. Bull Entomol Res 35:201–256CrossRefGoogle Scholar
  226. Rotheram S (1967) Immune surface of eggs of a parasitic insect. Nature 214:700PubMedCrossRefPubMedCentralGoogle Scholar
  227. Rotheram SM (1973) The surface of the egg of a parasitic insect. I. The surface of the egg and first instar larva of Nemeritis. Proc R Soc B 183:179–194Google Scholar
  228. Rowley AF, Ratcliffe NA (1981) Insects. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells 2. Academic, London, pp 421–488Google Scholar
  229. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715PubMedCrossRefGoogle Scholar
  230. Ryerse JS (1998) Gap junctions. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11C. Wiley-Liss, New York, pp 1167–1175Google Scholar
  231. Saito T, Iwabuchi K (2003) Effect of bombyxin-II, an insulin-related peptide of insects, on Bombyx mori hemocyte division in single-cell culture. Appl Entomol Zool 39:583–588CrossRefGoogle Scholar
  232. Salt G (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biol Rev 43:200–232PubMedCrossRefGoogle Scholar
  233. Sander K (1996) Variants of embryonic patterning mechanisms in insects: Hymenoptera and Diptera. Semin Cell Dev Biol 7:573–582CrossRefGoogle Scholar
  234. Sasakura Y, Shoguchi E, Takatori N, Wada S, Meinertzhagen IA, Satou Y, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. X. Genes for cell junctions and extracellular matrix. Dev Genes Evol 213:303–313PubMedCrossRefPubMedCentralGoogle Scholar
  235. Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551PubMedCrossRefGoogle Scholar
  236. Schmidt O, Schuchmann-Feddersen I (1989) Role of virus-like particles in parasitoid-host interaction of insects. Subcell Biochem 15:91–119PubMedCrossRefPubMedCentralGoogle Scholar
  237. Schmidt O, Theopold U, Strand M (2001) Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 23:344–351PubMedCrossRefGoogle Scholar
  238. Schmit AR, Ratcliffe NA (1977) The encapsulation of foreign tissue implants in Galleria mellonella larvae. J Insect Physiol 23:175–184PubMedCrossRefGoogle Scholar
  239. Schmit AR, Ratcliffe NA (1978) The encapsulation of araldite implants and recognition of foreignness in Clitumnus extradentatus. J Insect Physiol 24:511–521CrossRefGoogle Scholar
  240. Segoli M, Bouskila A, Harari AR, Keasar T (2009a) Developmental patterns in the polyembryonic parasitoid wasp Copidosoma koehleri. Arthropod Struct Dev 38:84–90CrossRefGoogle Scholar
  241. Segoli M, Harari AR, Bouskila A, Keasar T (2009b) Brood size in a polyembryonic parasitoid wasp is affected by relatedness among competing larvae. Behav Ecol 20:761–767CrossRefGoogle Scholar
  242. Segoli M, Harari AR, Bouskila A, Keasar T (2010) The effect of host starvation on parasitoid brood size in a polyembryonic wasp. Evol Ecol Res 12:259–267Google Scholar
  243. Sharanowski BJ, Dowling APG, Sharkey MJ (2011) Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonidae), based on multiple nuclear genes, and implications for classification. Syst Entomol 36:549–572CrossRefGoogle Scholar
  244. Shrivastava SC, Richards AG (1965) An autoradiographic study of the relation between hemocytes and connective tissue in the waxmoth Galleria mellonella L. Biol Bull 128:337–345CrossRefGoogle Scholar
  245. Siddiqui MI, Al-Khalifa MS (2014) Review of haemocyte count, response to chemicals, phagocytosis, encapsulation and metamorphosis in insects. Ital J Zool 81:2–15CrossRefGoogle Scholar
  246. Silvestri F (1921) Contribuzioni alla conoscenza biologica degli imenotteri parassiti. V. Sviluppo del Platygaster dryomyae Silv. (Fam. Proctotrupidae). Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d’agricoltura in Portici 11:299–326Google Scholar
  247. Smith AE, Helenius A (2004) How viruses enter animal cells. Science 304:237–242PubMedCrossRefGoogle Scholar
  248. Söderhäll K, Smith VJ (1986) The prophenoloxidase activating system: the biochemistry of its activation and role in arthropod cellular immunity, with special reference to crustaceans. In: Brehélin M (ed) Immunity in invertebrates. Springer, Berlin, pp 208–220CrossRefGoogle Scholar
  249. Starz-Gaiano M, Lehmann R (2000) Moving towards the next generation. Mech Dev 105:5–18CrossRefGoogle Scholar
  250. Starz-Gaiano M, Montell DJ (2004) Genes that drive invasion and migration in Drosophila. Curr Opin Genet Dev 14:86–91PubMedCrossRefGoogle Scholar
  251. Starzl TE, Ishikawa M, Putnam CW, Porter KA, Picache R, Husberg BS, Halgrimson CG, Schroter G (1974) Progress in and deterrents to orthotopic liver transplantation, with special reference to survival, resistance to hyperacute rejection, and biliary duct reconstruction. Transplant Proc 6:129–139PubMedPubMedCentralGoogle Scholar
  252. Stoltz DB (1990) Evidence for chromosomal transmission of polydnavirus DNA. J Gen Virol 71:1051–1056PubMedCrossRefGoogle Scholar
  253. Stolz DB, Guzo D, Belland ER, Lucarotti CJ, Mackinnon EA (1988) Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J Gen Virol 69:903–907CrossRefGoogle Scholar
  254. Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094PubMedCrossRefGoogle Scholar
  255. Strand MR (1986) The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. In: Waage J, Greathead D (eds) Insect parasitoids. Academic, London, pp 97–136Google Scholar
  256. Strand MR (1989) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomol Exp Appl 50:37–47CrossRefGoogle Scholar
  257. Strand MR (2014) Teratocytes and their functions in parasitoids. Curr Opin Insect Sci 6:68–73CrossRefGoogle Scholar
  258. Strand MR, Burke GR (2014) Polydnaviruses: Nature’s genetic engineers. Annu Rev Virol 1(1):333–354PubMedCrossRefPubMedCentralGoogle Scholar
  259. Strand MR, Burke GR (2015) Polydnaviruses: from discovery to current insights. Virology 479-480:393–402PubMedCrossRefGoogle Scholar
  260. Strand MR, Grbic M (1997) Development and evolution of polyembryonic insects. Curr Top Dev Biol 35:121–160CrossRefGoogle Scholar
  261. Strand MR, Noda T (1991) Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor. J Insect Physiol 37:839–850CrossRefGoogle Scholar
  262. Strand MR, Pech LL (1995) Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol 40:31–56PubMedCrossRefGoogle Scholar
  263. Strand MR, Wong EA (1991) The growth and role of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includens. J Insect Physiol 37:503–515CrossRefGoogle Scholar
  264. Strand MR, Dover BA, Johnson JA (1990a) Alterations in the ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch Insect Biochem Physiol 13:41–51CrossRefGoogle Scholar
  265. Strand MR, Johnson JA, Dover BA (1990b) Ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch Insect Biochem Physiol 13:41–51CrossRefGoogle Scholar
  266. Strand MR, Baehrecke EH, Wong EA (1991a) The role of host endocrine factors in the development of polyembryonic parasitoids. Biol Control 1:144–152CrossRefGoogle Scholar
  267. Strand MR, Goodman WG, Baehrecke E (1991b) The juvenile hormone titer of Trichoplusia ni and its potential role in embryogenesis of the polyembryonic wasp Copidosoma floridanum. Insect Biochem 21:205–214CrossRefGoogle Scholar
  268. Summers MD, Dib-Hajj SD (1995) Polydnavirus-facilitated endoparasite protection against host immune defense. Proc Natl Acad Sci U S A 92:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  269. Tachi S, Tachi C (1979) Ultrastructural studies on maternal embryonic cell interaction during experimentally induced implantation of rat blastocysts to the endometrium of the mouse. Dev Biol 68:203–223PubMedCrossRefGoogle Scholar
  270. Tagashira E, Tanaka T (1998) Parasitic castration of Pseudaletia separate by Cotesia kariyai and its association with polydnavirus gene expression. J Insect Physiol 44:733–744PubMedCrossRefGoogle Scholar
  271. Takahashi-Nakaguchi A, Hiraoka T, Iwabuchi K (2010) An ultrastructural study of polyembryonic parasitoid embryo and host embryo cell interactions. J Morphol 271:750–758PubMedCrossRefGoogle Scholar
  272. Takahashi-Nakaguchi A, Hiraoka T, Iwabuchi K (2011) The carbohydrate ligands on the host embryo mediate intercellular migration of the parasitic wasp embryo. FEBS Lett 585:2295–2299PubMedCrossRefGoogle Scholar
  273. Takeuchi IK, Takeuchi YK (1981) Intercellular contacts between the embryonic or extraembryonic ectoderm and the primitive endoderm in rat egg cylinders prior to the formation of the primitive streak. Develop Growth Differ 23:157–164CrossRefGoogle Scholar
  274. Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13:285–293PubMedCrossRefGoogle Scholar
  275. Tanaka T, Wago H (1990) Ultrastructural and functional maturation of teratocytes of Apanteles kariyai. Arch Insect Biochem Physiol 13:187–197CrossRefGoogle Scholar
  276. Tarkowski AK (1962) Inter-specific transfer of eggs between rat and mouse. J Embryol Exp Morphol 10:476–495PubMedGoogle Scholar
  277. Theopold U, Schmidt O (1997) Helix pomatia lectin and annexin V, two molecular probes for insect microparticles: possible involvement in hemolymph coagulation. J Insect Physiol 43:667–674PubMedCrossRefGoogle Scholar
  278. Theopold U, Ekengren S, Hultmark D (1996a) HLH106m a Drosophila transcription factor with similarity to the vertebrate sterol responsive element binding protein. Proc Natl Acad Sci U S A 93:1195–1199PubMedPubMedCentralCrossRefGoogle Scholar
  279. Theopold U, Samakovlis C, Erdjument-Bromage H, Dillon N, Axelsson B, Schmidt O, Tempst P, Hultmark D (1996b) Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Biol Chem 271:12708–12715PubMedCrossRefGoogle Scholar
  280. Tian C, Wang L, Ye G, Zhu S (2010) Inhibition of melanization by a Nasonia defensin-like peptide: implications for host immune suppression. J Insect Physiol 56:1857–1862PubMedCrossRefGoogle Scholar
  281. Tojo S, Naganuma F, Arakawa K, Yokoo S (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46:1129–1135PubMedCrossRefGoogle Scholar
  282. Tsukamoto Y, Masarachia P, Schein SJ, Sterling P (1992) Gap junctions between the pedicles of macaque foveal cones. Vis Res 32:1809–1815PubMedCrossRefGoogle Scholar
  283. Utsunomiya A, Iwabuchi K (2002) Interspecific competition between the polyembryonic wasp Copidosoma floridanum and the gregarious endoparasitoid Glyptapanteles pallipes. Entomol Exp Appl 104:353–362CrossRefGoogle Scholar
  284. van Die I, Cummings RD (2010) Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 20:2–12PubMedCrossRefGoogle Scholar
  285. Vinson SB (1990) How parasitoids deal with the immune system of their host: an overview. Arch Insect Biochem Physiol 13:3–27CrossRefGoogle Scholar
  286. Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Q Rev Biol 55:143–165CrossRefGoogle Scholar
  287. Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH, Zhou YN, Gu QJ, Wu XT, Yin CL, Guo DH, Hu RM, Hu NN, Chen T, Zheng BY, Zou JN, Zhan LQ, Wei SJ, Wang YP, Huang JH, Fang XD, Strand MR, Chen XX (2018) Parasitic insect-derived miRNAs modulate host development. Nat Commun 9:2205PubMedPubMedCentralCrossRefGoogle Scholar
  288. Wani M, Yagi S, Tanaka T (1990) Synergistic effect of venom, calyx and teratocytes of Apanteles kariyai on the inhibition of larval-pupal ecdysis of the host, Psedaletia separate. Entomol Exp Appl 57:101–104CrossRefGoogle Scholar
  289. Webb BA (1998) Polydnavirus biology genome structure and evolution. In: Ball A, Miller LK (eds) The insect viruses. Plenum Press, New York, pp 105–139CrossRefGoogle Scholar
  290. Webb BA, Luckhart S (1994) Evidence for an early immunosuppressive role for related Campoletis sonorensis venom and ovarian proteins in Heliothis virescens. Arch Insect Biochem Physiol 26:147–163PubMedCrossRefGoogle Scholar
  291. Webb BA, Strand MR (2005) The biology and genomics of polydnaviruses. In: Gilbert LI, Latrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier, San Diego, pp 323–360CrossRefGoogle Scholar
  292. Webb BA, Beckage NE, Hayakawa Y, Krell PJ, Lanzrein B, Stolz DB, Strand MR, Summers MD (2000) Polydnaviridae. In: van Regenmortel MHV, Maniloff J, Mayo MA, McGeoch DJ, Preingle CR, Wickner RB (eds) Virus taxonomy. Academic, New York, pp 253–260Google Scholar
  293. Wishart G, van Steenburgh WE (1934) A contribution to the technique of propagation of Chelonus annulipes Wesm, an imported parasite of the European corn borer. Can Entomol 66:121–124CrossRefGoogle Scholar
  294. Wu M-L, Ye G-T, Zhu JY, Chen X-X, Hu C (2008) Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J Invertebr Pathol 99:186–191PubMedCrossRefGoogle Scholar
  295. Wyler T, Lanzrein B (2003) Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J Gen Virol 84:1151–1163PubMedCrossRefGoogle Scholar
  296. Yagi S, Tanaka T (1992) Retardation of testis development in the armyworm, Pseudaletia separate, parasitized by the braconid wasp Cotesia kariyai. Invertebr Reprod Dev 22:151–157CrossRefGoogle Scholar
  297. Yamashita M, Iwabuchi K (2001) Bombyx mori prohemocyte division and differentiation in individual microcultures. J Insect Physiol 47:325–331PubMedCrossRefPubMedCentralGoogle Scholar
  298. Zhang D, Dahlman DL, Gelman DB (1992) Juvenile hormone esterase activity and ecdysteroid titer in Heliothis virescens larvae injected with Microplitis croceipes teratocytes. Arch Insect Biochem Physiol 20:231–242CrossRefGoogle Scholar
  299. Zhang G, Schmidt O, Asgari S (2004) A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J Biol Chem 279:41580–41585PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kikuo Iwabuchi
    • 1
  1. 1.Tokyo University of Agriculture and TechnologyFuchuJapan

Personalised recommendations