Advertisement

Laser Heat-Mode Lithography Using Organic Thin Films

  • Jingsong WeiEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 291)

Abstract

Generally, the laser heat-mode lithography materials are from inorganic chalcogenide phase-change thin films due to selective wet etching between crystalline and amorphous phases [1, 2]. Actually, some organic thin films can be also used as heat-mode lithography materials [3, 4, 5, 6, 7, 8], and the lithography is completed through a single-step process, where the pattern structures are directly produced through laser-induced thermal gasification, thermal decomposition, or thermal deformation, and no developing process is required.

References

  1. 1.
    A. Dun, J. Wei, F. Gan, Laser direct writing pattern structures on AgInSbTe phase change thin film. Chin. Opt. Lett. 9, 082101 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    J. Wei, K. Zhang, T. Wei, Y. Wang, Y. Wu, M. Xiao, High-speed maskless nanolithography with visible light based on photothermal localization. Sci. Rep. 7, 43892 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Chen, Y. Wu, F. Huang, D. Gu, F. Gan, Optical properties of nickel(II)-azo complexes thin films for potential application as high-density recordable optical recording media. Solid State Commun. 141(1), 1–5 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    H. W. Wu, M. C. Li, C. T. Yang, C. T. Cheng, S. C. Chen, D. R. Huang, Organic thermal mode photoresists for applications in nanolithography. Suppl. Proc. Mater. Process. Interfaces 1, 663–668 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Deng, Y. Geng, Y. Wu, New calix[4]arene derivatives as maskless and development-free laser thermal lithography materials for fabricating micro/nano-patterns. J. Mater. Chem. C 1(13), 2470–2476 (2013)CrossRefGoogle Scholar
  6. 6.
    K. Zhang, Z. Chen, Y. Geng, Y. Wang, Y. Wu, Nanoscale-resolved patterning on metal hydrazone complex thin films using diode-based maskless laser writing in the visible light regime. Chin. Opt. Lett. 14(5), 051401 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Sakai, M. Shimo, N. Takamori, Y. Murakami, A. Takahashi, Resin material dependence of pit shape in thermal direct mastering. Jpn. J. Appl. Phys. 46(6S), 3942 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kuwahara, J. H. Kim, J. Tominaga, Dot formation with 170-nm dimensions using a thermal lithography technique. Microelectron. Eng. 67, 651–656 (2003)CrossRefGoogle Scholar
  9. 9.
    K. Zhang, Z. Chen, J. Wei, T. Wei, Y. Geng, Y. Wang, Y. Wu, A study on one-step laser nanopatterning onto copper–hydrazone-complex thin films and its mechanism. Phys. Chem. Chem. Phys. 19(20), 13272–13280 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Liu, J. Wei, F. Gan, Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films. J. Appl. Phys. 110, 033503 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    G. D. Kozak, A. Y. Vasin, A. V. D’yachkova, Estimating the explosion hazard of aromatic azo compounds. Combust. Explosion Shock Waves 44(5), 579–582 (2008)CrossRefGoogle Scholar
  12. 12.
    T. He, Y. Cheng, Y. Du, Y. Mo, Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films. Opt. Commun. 275, 240–244 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    D. Zhao, H. Jain, L. C. Malacarne, P. R. B. Pedreira, Role of photothermal effect in photoexpansion of chalcogenide glasses. Phys. Status Solidi B 250, 983–987 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    K. Tanaka, A. Saitoh, N. Terakado, Giant photo-expansion in chalcogenide glass. J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006)Google Scholar
  15. 15.
    S. N. Yannopoulos, M. L. Trunov, Photoplastic effects in chalcogenide glasses: a review. Phys. Status Solidi B 246, 1773–1785 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, K. Ichikawa, 405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material. Appl. Phys. Express 2(12), 126502 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, N. D. Lai, One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect. J. Appl. Phys. 119(1), 013101 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, N. D. Lai, Direct laser writing of polymeric nanostructures via optically induced local thermal effect. Appl. Phys. Lett. 108(18), 183104 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations