Advertisement

High-Speed Laser Heat-Mode Lithography on Chalcogenide Resists

  • Jingsong WeiEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 291)

Abstract

As is well known, the photolithography patterns are generally written on organic resists. The organic resists are large molecular-weight long-chain compounds (polymers) [1, 2]. The photolithography exposure is due to photo-induced glass transition effect. The exposure dose is required to be low, and thus the organic resist can be used in the projection (mask) lithography.

References

  1. 1.
    T. Itani, T. Kozawa, Resist materials and processes for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 52, 010002 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    A. Kovalskiy, M. Vlcek, H. Jain, A. Fiserova, C. M. Waits, M. Dubey, Development of chalcogenide glass photoresists for gray scale lithography. J. Non-Crystal. Solids 352, 589 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    T. Grosjean, D. Courjon, C. Bainier, Smallest lithographic marks generated by optical focusing systems. Opt. Lett. 32, 976 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    J. Fischer, G. Freymann, M. Wegener, The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Wei, Y. Wang, Y. Wu, Manipulation of heat-diffusion channel in laser thermal lithography. Opt. Express 22, 32470 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    X. Cai, J. Wei, Thermal properties of Te-based phase-change materials. Proc. SPIE 8782, 87820O (2013)ADSCrossRefGoogle Scholar
  7. 7.
    H. Li, Y. Geng, Y. Wu, Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography. Appl. Phys. A 107, 221 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5. J. Appl. Phys. 86, 5879 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    W. K. Njoroge, H. W. Woltgens, M. Wuttig, Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 20, 230 (2002)Google Scholar
  10. 10.
    T. Matsunaga, Y. Umetani, N. Yamada, Structural study of an Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B 64, 184116 (2001)Google Scholar
  11. 11.
    S. Raoux, R. M. Shelby, J. J. Sweet, B. Munoz, M. Salinga, Y. C. Chen, Y. H. Shih, E. K. Lai, M. H. Lee, Phase change materials and their application to random access memory technology. Microelectron. Eng. 85, 2330 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Dun, J. Wei, F. Gan, Laser direct writing pattern structures on AgInSbTe phase change thin film. Chin. Opt. Lett. 9, 082101 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Wei, F. Gan, Theoretical explanation of different crystallization processes between as-deposited and melted-quenched amorphous Ge2Sb2Te5 thin films. Thin Solid Films 441, 292 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    C. Deng, Y. Geng, Y. Wu, Y. Wang, J. Wei, Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film. Microelectron. Eng. 103, 7 (2013)CrossRefGoogle Scholar
  15. 15.
    J. H. Kim, Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film. Semiconductor Sci. Tech. 23, 105009 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, E. Ohno, TeOx-based film for heat-mode inorganic photoresist mastering. Jpn. J. Appl. Phys. Part 1 44, 3574 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S. Liu, J. Wei, F. Gan, Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond. Appl. Phys. Lett. 100, 111903 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J. Liu, J. Wei, Optical nonlinear absorption characteristics of AgInSbTe phase change thin films. J. Appl. Phys. 106, 083112 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J. Wei, H. Yan, Strong nonlinear saturation absorption-induced optical pinhole channel and super-resolution effects: a multi-layer system model. Opt. Lett. 39, 6387 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J. Wei, K. Zhang, T. Wei, Y. Wang, Y. Wu, M. Xiao, High-speed maskless nanolithography with visible light based on photothermal localization. Sci. Rep. 7, 43892 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M. Mansuripur, G. A. Neville Connell, J. A. Good, Laser-induced local heating of multilayers. Appl. Opt. 21, 1106 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    X. Jiao, J. Wei, F. Gan, M. Xiao, Temperature dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials. Appl. Phys. A 94, 627 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J. A. Kalb, M. Wuttig, F. Spaepen, Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Bai, J. Wei, X. Liang, High-speed laser writing of arbitrary patterns in polar coordinate system. Rev. Sci. Instrum. 87, 125118 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations